Summer Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: s2p65

Easiest Solution 2 Pass Your Certification Exams

ANS-C01 Amazon Web Services Amazon AWS Certified Advanced Networking - Specialty Free Practice Exam Questions (2025 Updated)

Prepare effectively for your Amazon Web Services ANS-C01 Amazon AWS Certified Advanced Networking - Specialty certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2025, ensuring you have the most current resources to build confidence and succeed on your first attempt.

Page: 4 / 5
Total 288 questions

A company has an order processing system that needs to keep credit card numbers encrypted. The company's customer-facing application runs as an Amazon Elastic Container Service (Amazon ECS) service behind an Application Load Balancer (ALB) in the us-west-2 Region. An Amazon CloudFront distribution is configured with the ALB as the origin. The company uses a third-party trusted certificate authority to provision its certificates.

The company is using HTTPS for encryption in transit. The company needs additional field-level encryption to keep sensitive data encrypted during processing so that only certain application components can decrypt the sensitive data.

Which combination of steps will meet these requirements? (Choose two.)

A.

Import the third-party certificate for the ALB. Associate the certificate with the ALB. Upload the certificate for the CloudFront distribution into AWS Certificate Manager (ACM) in us-west-2.

B.

Import the third-party certificate for the ALB into AWS Certificate Manager (ACM) in us-west-2. Associate the certificate with the ALB. Upload the certificate for the CloudFront distribution into ACM in the us-east-1 Region.

C.

Upload the private key that handles the encryption of the sensitive data to theCloudFront distribution. Create a field-level encryption profile and specify the fields that contain sensitive information. Create a field-level encryption configuration, and choose the newly created profile. Link the configuration to the appropriate cache behavior that is associated with sensitive POST requests.

D.

Upload the public key that handles the encryption of the sensitive data to the CloudFront distribution. Create a field-level encryption configuration, and specify the fields that contain sensitive information. Create a field-level encryption profile, and choose the newly created configuration. Link the profile to the appropriate cache behavior that is associated with sensitive GET requests.

E.

Upload the public key that handles the encryption of the sensitive data to the CloudFront distribution. Create a field-level encryption profile and specify the fields that contain sensitive information. Create a field-level encryption configuration, and choose the newly created profile. Link the configuration to the appropriate cache behavior that is associated with sensitive POST requests.

A software-as-a-service (SaaS) company is migrating its private SaaS application to AWS. The company has hundreds of customers that connect to multiple data centers by using VPN tunnels. As the number of customers has grown, the company has experienced more difficulty in its effort to manage routing and segmentation of customers with complex NAT rules.

After the migration to AWS is complete, the company's AWS customers must be able to access the SaaS application directly from their VPCs. Meanwhile, the company's on-premises customers still must be able to connect through IPsec encrypted tunnels.

Which solution will meet these requirements?

A.

Connect the AWS customer VPCs to a shared transit gateway. Use AWS Site-to-Site VPN connections to the transit gateway for the on-premises customers

B.

Use AWS PrivateLink to connect the AWS customers. Use a third-party routing appliance in the SaaS application VPC to terminate onpremises Site-to-Site VPN connections.

C.

Peer each AWS customer's VPCs to the VPC that hosts the SaaS application. Create AWS Site-to-Site VPN connections on the SaaS VPC virtual private gateway.

D.

Use Site-to-Site VPN tunnels to connect each AWS customer's VPCs to the VPC that hosts the SaaS application. Use AWS Site-to-Site VPN to connect the on-premises customers.

A customer has set up multiple VPCs for Dev, Test, Prod, and Management. You need to set up AWS Direct Connect to enable data flow from on-premises to each VPC. The customer has monitoring software running in the Management VPC that collects metrics from the instances in all the other VPCs. Due to budget requirements, data transfer charges should be kept at minimum.

Which design should be recommended?

A.

Create a total of four private VIFs, one for each VPC owned by the customer, and route traffic between VPCs using the Direct Connect link.

B.

Create a private VIF to the Management VPC, and peer this VPC to all other VPCs.

C.

Create a private VIF to the Management VPC, and peer this VPC to all other VPCs, enable source/destination NAT in the Management VPC.

D.

Create a total of four private VIFs, and enable VPC peering between all VPCs.

An AWS CloudFormation template is being used to create a VPC peering connection between two existing operational VPCs, each belonging to a different AWS account. All necessary components in the ‘Remote’ (receiving) account are already in place.

The template below creates the VPC peering connection in the Originating account. It contains these components:

AWSTemplateFormation Version: 2010-09-09

Parameters:

Originating VCId:

Type: String

RemoteVPCId:

Type: String

RemoteVPCAccountId:

Type: String

Resources:

newVPCPeeringConnection:

Type: ‘AWS::EC2::VPCPeeringConnection’

Properties:

VpcdId: !Ref OriginatingVPCId

PeerVpcId: !Ref RemoteVPCId

PeerOwnerId: !Ref RemoteVPCAccountId

Which additional AWS CloudFormation components are necessary in the Originating account to create an operational cross-account VPC peering connection with AWS CloudFormation? (Select two.)

A.

Resources:NewEC2SecurityGroup:Type: AWS::EC2::SecurityGroup

B.

Resources:NetworkInterfaceToRemoteVPC:Type: “AWS::EC2NetworkInterface”

C.

Resources:newEC2Route:Type: AWS::EC2::Route

D.

Resources:VPCGatewayToRemoteVPC:Type: “AWS::EC2::VPCGatewayAttachment”

E.

Resources:newVPCPeeringConnection:Type: ‘AWS::EC2VPCPeeringConnection’PeerRoleArn: !Ref PeerRoleArn

A marketing company is using hybrid infrastructure through AWS Direct Connect links and a software-defined wide area network (SD-WAN) overlay to connect its branch offices. The company connects multiple VPCs to a third-party SD-WAN appliance transit VPC within the same account by using AWS Site-to-Site VPNs.

The company is planning to connect more VPCs to the SD-WAN appliance transit VPC. However, the company faces challenges of scalability, route table limitations, and higher costs with the existing architecture. A network engineer must design a solution to resolve these issues and remove dependencies.

Which solution will meet these requirements with the LEAST amount of operational overhead?

A.

Configure a transit gateway to attach the VPCs. Configure a Site-to-Site VPN connection between the transit gateway and the third-party SD-WAN appliance transit VPC. Use the SD-WAN overlay links to connect to the branch offices.

B.

Configure a transit gateway to attach the VPCs. Configure a transit gateway Connect attachment for the third-party SD-WAN appliance transit VPC. Use transit gateway Connect native integration of SD-WAN virtual hubs with AWS Transit Gateway.

C.

Configure a transit gateway to attach the VPCs. Configure VPC peering between the VPCs and the third-party SD-WAN appliance transit VPC. Use the SD-WAN overlay links to connect to the branch offices.

D.

Configure VPC peering between the VPCs and the third-party SD-WAN appliance transit VPC. Use transit gateway Connect native integration of SD-WAN virtual hubs with AWS Transit Gateway.

A company's security guidelines state that all outbound traffic from a VPC to the company's on-premises data center must pass through a security appliance. The security appliance runs on an Amazon EC2 instance. A network engineer needs to improve the network performance between the on-premises data center and the security appliance.

Which actions should the network engineer take to meet these requirements? (Choose two.)

A.

Use an EC2 instance that supports enhanced networking.

B.

Send outbound traffic through a transit gateway.

C.

Increase the EC2 instance size.

D.

Place the EC2 instance in a placement group within the VPC.

E.

Attach multiple elastic network interfaces to the EC2 instance.

A company has a public application. The application uses an Application Load Balancer (ALB) that has a target group of Amazon EC2 instances.

The company wants to protect the application from security issues in web requests. The traffic to the application must have end-to-end encryption.

Which solution will meet these requirements?

A.

Configure a Network Load Balancer (NLB) that has a target group of the existing EC2 instances. Configure TLS connections to terminate on the EC2 instances that use a public certificate. Configure an AWS WAF web ACL. Associate the web ACL with the NLB.

B.

Configure TLS connections to terminate at the ALB that uses a public certificate. Configure AWS Certificate Manager (ACM) certificates for the communication between the ALB and the EC2 instances. Configure an AWS WAF web ACL. Associate the web ACL with the ALB.

C.

Configure a Network Load Balancer (NLB) that has a target group of the existing EC2 instances. Configure TLS connections to terminate at the EC2 instances by creating a TLS listener. Configure self-signed certificates on the EC2 instances for the communication between the NLB and the EC2 instances. Configure an AWS WAF web ACL. Associate the web ACL with the NLB.

D.

Configure a third-party certificate on the EC2 instances for the communication between the ALB and the EC2 instances. Import the third-party certificate into AWS Certificate Manager (ACM). Associate the imported certificate with the ALB. Configure TLS connections to terminate at the ALB. Configure an AWS WAF web ACL. Associate the web ACL with the ALB.

An application team for a startup company is deploying a new multi-tier application into the AWS Cloud. The application will be hosted on a fleet of Amazon EC2 instances that run in an Auto Scaling group behind a publicly accessible Network Load Balancer (NLB). The application requires the clients to work with UDP traffic and TCP traffic.

In the near term, the application will serve only users within the same geographic location. The application team plans to extend the application to a global audience and will move the deployment to multiple AWS Regions around the world to bring the application closer to the end users. The application team wants to use the new Regions to deploy new versions of the application and wants to be able to control the amount of traffic that each Region receives during these rollouts. In addition, the application team must minimize first-byte latency and jitter (randomized delay) for the end users.

How should the application team design the network architecture for the application to meet these requirements?

A.

Create an Amazon CloudFront distribution to align to each Regional deployment. Set the NLB for each Region as the origin for each CloudFront distribution. Use an Amazon Route 53 weighted routing policy to control traffic to the newer Regional deployments.

B.

Create an AWS Global Accelerator accelerator and listeners for the required ports. Configure endpoint groups for each Region. Configure a traffic dial for the endpoint groups to control traffic to the newer Regional deployments. Register the NLBs with the endpoint groups.

C.

Use Amazon S3 Transfer Acceleration for the application in each Region. Adjust the amount of traffic that each Region receives from the Transfer Acceleration endpoints to the Regional NLBs.

D.

Create an Amazon CloudFront distribution that includes an origin group. Set the NLB for each Region as the origins for the origin group. Use an Amazon Route 53 latency routing policy to control traffic to the new Regional deployments.

A bank built a new version of its banking application in AWS using containers that content to an on-premises database over VPN connection. This application version requires users to also update their client application. The bank plans to deprecate the earlier client version. However, the company wants to keep supporting earlier clients through their on-premises version of the application to serve a small portion of the customers who haven’t yet upgraded.

What design will allow the company to serve both newer and earlier clients in the MOST efficient way?

A.

Use an Amazon Route 53 multivalue answer routing policy to route older client traffic to the on-premises application version and the rest of the traffic to the new AWS based version.

B.

Use a Classic Load Balancer for the new application. Route all traffic to the new application by using an Elastic Load Balancing (ELB) load balancer DNS. Define a user-agent-based rule on the backend servers to redirect earlier clients to the on-premises application.

C.

Use an Application Load Balancer for the new application. Register both the new and earlier applications as separate target groups and use path-based routing to route traffic based on the application version.

D.

Use an Application Load Balancer for the new application. Register both the new and earlier application backends as separate target groups. Use header-based routing to route traffic based on the application version.

A company operates its IT services through a multi-site hybrid infrastructure. The company deploys resources on AWS in the us-east-1 Region and in the eu-west-2 Region. The company also deploys resources in its own data centers that are located in the United States (US) and in the United Kingdom (UK). In both AWS Regions, the company uses a transit gateway to connect 15 VPCs to each other. The company has created a transit gateway peering connection between the two transit gateways. The VPC CIDR blocks do not overlap with each other or with IP addresses used within the data centers. The VPC CIDR prefixes can also be aggregated either on a Regional level or for the company's entire AWS environment.

The data centers are connected to each other by a private WAN connection. IP routing information is exchanged dynamically through Interior BGP (iBGP) sessions. The data centers maintain connectivity to AWS through one AWS Direct Connect connection in the US and one Direct Connect connection in the UK. Each Direct Connect connection is terminated on a Direct Connect gateway and is associated with a local transit gateway through a transit VIF.

Traffic follows the shortest geographical path from source to destination. For example, packets from the UK data center that are targeted to resources in eu-west-2 travel across the local Direct Connect connection. In cases of cross-Region data transfers, such as from the UK data center to VPCs in us-east-1, the private WAN connection must be used to minimize costs on AWS. A network engineer has configured each transit gateway association on the Direct Connect gateway to advertise VPC-specific CIDR IP prefixes only from the local Region. The routes toward the other Region must be learned through BGP from the routers in the other data center in the original, non-aggregated form.

The company recently experienced a problem with cross-Region data transfers because of issues with its private WAN connection. The network engineer needs to modify the routing setup to prevent similar interruptions in the future. The solution cannot modify the original traffic routing goal when the network is operating normally.

Which modifications will meet these requirements? (Choose two.)

A.

Remove all the VPC CIDR prefixes from the list of subnets advertised through the local Direct Connect connection. Add the company's entire AWS environment aggregate route to the list of subnets advertised through the local Direct Connect connection.

B.

Add the CIDR prefixes from the other Region VPCs and the local VPC CIDR blocks to the list of subnets advertised through the local Direct Connect connection. Configure data center routers to make routing decisions based on the BGP communities received.

C.

Add the aggregate IP prefix for the other Region and the local VPC CIDR blocks to the list of subnets advertised through the local Direct Connect connection.

D.

Add the aggregate IP prefix for the company's entire AWS environment and the local VPC CIDR blocks to the list of subnets advertised through the local Direct Connect connection.

E.

Remove all the VPC CIDR prefixes from the list of subnets advertised through the local Direct Connect connection. Add both Regional aggregate IP prefixes to the list of subnets advertised through the Direct Connect connection on both sides of the network. Configure data center routers to make routing decisions based on the BGP communities received.

A company uses Amazon Route 53 to register a public domain, example.com, in an AWS account. A central services group manages the account. The company wants to create a subdomain, test.example.com, in another AWS account to offer name services for Amazon EC2 instances that are hosted in the account. The company does not want to migrate the parent domain to the subdomain account.

A network engineer creates a new Route 53 hosted zone for the subdomain in the second account.

Which combination of steps must the network engineer take to complete the task? (Choose two.)

A.

Add records for the hosts of the new subdomain to the new Route 53 hosted zone.

B.

Update the DNS service for the parent domain by adding name server (NS) records for the subdomain.

C.

Update the DNS service for the subdomain by adding name server (NS) records for theparent domain.

D.

Create an alias record from the parent domain that points to the hosted zone for the subdomain in the second account.

E.

Add a start of authority (SOA) record in the parent domain for the subdomain.

A company is hosting an application on Amazon EC2 instances behind a Network Load Balancer (NLB). A solutions architect added EC2 instances in a second Availability Zone to improve the availability of the application. The solutions architect added the instances to the NLB target group.

The company's operations team notices that traffic is being routed only to the instances in the first Availability Zone.

What is the MOST operationally efficient solution to resolve this issue?

A.

Enable the new Availability Zone on the NLB

B.

Create a new NLB for the instances in the second Availability Zone

C.

Enable proxy protocol on the NLB

D.

Create a new target group with the instances in both Availability Zones

A company is planning to use Amazon S3 to archive financial data. The data is currently stored in an on-premises data center. The company uses AWS Direct Connect with a Direct Connect gateway and a transit gateway to connect to the on-premises data center. The data cannot be transported over the public internet and must be encrypted in transit.

Which solution will meet these requirements?

A.

Create a Direct Connect public VIF. Set up an IPsec VPN connection over the public VIF to access Amazon S3. Use HTTPS for communication.

B.

Create an IPsec VPN connection over the transit VIF. Create a VPC and attach the VPC to the transit gateway. In the VPC, provision an interface VPC endpoint for Amazon S3. Use HTTPS for communication.

C.

Create a VPC and attach the VPC to the transit gateway. In the VPC, provision an interface VPC endpoint for Amazon S3. Use HTTPS for communication.

D.

Create a Direct Connect public VIF. Set up an IPsec VPN connection over the public VIF to the transit gateway. Create an attachment for Amazon S3. Use HTTPS for communication.

A company’s network engineer is designing a hybrid DNS solution for an AWS Cloud workload. Individual teams want to manage their own DNS hostnames for their applications in their development environment. The solution must integrate the application-specific hostnames with the centrally managed DNS hostnames from the on-premises network and must provide bidirectional name resolution. The solution also must minimize management overhead.

Which combination of steps should the network engineer take to meet these requirements? (Choose three.)

A.

Use an Amazon Route 53 Resolver inbound endpoint.

B.

Modify the DHCP options set by setting a custom DNS server value.

C.

Use an Amazon Route 53 Resolver outbound endpoint.

D.

Create DNS proxy servers.

E.

Create Amazon Route 53 private hosted zones.

F.

Set up a zone transfer between Amazon Route 53 and the on-premises DNS.

A company's existing AWS environment contains public application servers that run on Amazon EC2 instances. The application servers run in a VPC subnet. Each server is associated with an Elastic IP address.

The company has a new requirement for firewall inspection of all traffic from the internet before the traffic reaches any EC2 instances. A security engineer has deployed and configured a Gateway Load Balancer (GLB) in a standalone VPC with a fleet of third-party firewalls.

How should a network engineer update the environment to ensure that the traffic travels across the fleet of firewalls?

A.

Deploy a transit gateway. Attach a GLB endpoint to the transit gateway. Attach the application VPC to the transit gateway. Update the application subnet route table's default route destination to be the GLB endpoint. Ensure that the EC2 instances' security group allows traffic from the GLB endpoint.

B.

Update the application subnet route table to have a default route to the GLB. On the standalone VPC that contains the firewall fleet, add a route in the route table for the application VPC's CIDR block with the GLB endpoint as the destination. Update the EC2 instances' security group to allow traffic from the GLB.

C.

Provision a GLB endpoint in the application VPC in a new subnet. Create a gateway route table with a route that specifies the application subnet CIDR block as the destination and the GLB endpoint as the target. Associate the gateway route table with the internet gateway in the application VPC. Update the application subnet route table's default route destination to be the GLB endpoint.

D.

Instruct the security engineer to move the GLB into the application VPC. Create a gateway route table. Associate the gateway route table with the application subnet. Add a default route to the gateway route table with the GLB as its destination. Update the route table on the GLB to direct traffic from the internet gateway to the application servers. Ensure that the EC2 instances' security group allows traffic from the GLB.

A network engineer needs to set up an Amazon EC2 Auto Scaling group to run a Linux-based network appliance in a highly available architecture. The network engineer is configuring the new launch template for the Auto Scaling group.

In addition to the primary network interface the network appliance requires a second network interface that will be used exclusively by the application to exchange traffic with hosts over the internet. The company has set up a Bring Your Own IP (BYOIP) pool that includes an Elastic IP address that should be used as the public IP address for the second network interface.

How can the network engineer implement the required architecture?

A.

Configure the two network interfaces in the launch template. Define the primary network interface to be created in one of the private subnets. For the second network interface, select one of the public subnets. Choose the BYOIP pool ID as the source of public IP addresses.

B.

Configure the primary network interface in a private subnet in the launch template. Use the user data option to run a cloud-init script after boot to attach the second network interface from a subnet with auto-assign public IP addressing enabled.

C.

Create an AWS Lambda function to run as a lifecycle hook of the Auto Scaling group when an instance is launching. In the Lambda function, assign a network interface to an AWS Global Accelerator endpoint.

D.

During creation of the Auto Scaling group, select subnets for the primary network interface. Use the user data option to run a cloud-init script to allocate a second network interface and to associate an Elastic IP address from the BYOIP pool.

A global company operates all its non-production environments out of three AWS Regions: eu-west-1, us-east-1, and us-west-1. The company hosts all its production workloads in two on-premises data centers. The company has 60 AWS accounts and each account has two VPCs in each Region. Each VPC has a virtual private gateway where two VPN connections terminate for resilient connectivity to the data centers. The company has 360 VPN tunnels to each data center, resulting in high management overhead. The total VPN throughput for each Region is 500 Mbps.

The company wants to migrate the production environments to AWS. The company needs a solution that will simplify the network architecture and allow for future growth. The production environments will generate an additional 2 Gbps of traffic per Region back to the data centers. This traffic will increase over time.

Which solution will meet these requirements?

A.

Set up an AWS Direct Connect connection from each data center to AWS in each Region. Create and attach private VIFs to a single Direct Connect gateway. Attach the Direct Connect gateway to all the VPCs. Remove the existing VPN connections that are attached directly to the virtual private gateways.

B.

Create a single transit gateway with VPN connections from each data center. Share the transit gateway with each account by using AWS Resource Access Manager (AWS RAM). Attach the transit gateway to each VPC. Remove the existing VPN connections that are attached directly to the virtual private gateways.

C.

Create a transit gateway in each Region with multiple newly commissioned VPN connections from each data center. Share the transit gateways with each account by using AWS Resource Access Manager (AWS RAM). In each Region, attach the transit gateway to each VPRemove the existing VPN connections that are attached directly to the virtual private gateways.

D.

Peer all the VPCs in each Region to a new VPC in each Region that will function as a centralized transit VPC. Create new VPN connections from each data center to the transit VPCs. Terminate the original VPN connections that are attached to all the original VPCs. Retain the new VPN connection to the new transit VPC in each Region.

A European car manufacturer wants to migrate its customer-facing services and its analytics platform from two on-premises data centers to the AWS Cloud. The company has a 50-mile (80.4 km) separation between its on-premises data centers and must maintain that separation between its two locations in the cloud. The company also needs failover capabilities between the two locations in the cloud.

The company's infrastructure team creates several accounts to separate workloads and responsibilities. The company provisions resources in the eu-west-3 Region and in the eu-central-1 Region. The company selects an AWS Direct Connect Partner in each Region and requests two resilient 1 Gbps fiber connections from each provider.

The company's network engineer must establish a connection between all VPCs in the accounts and between the on-premises network and the AWS Cloud. The solution must provide access to all services in both Regions in case of network issues.

Which solution will meet these requirements?

A.

Create a Direct Connect gateway. Create a private VIF on each of the Direct Connect connections. Attach the private VIFs to the Direct Connect gateway. Use equal-cost multi-path (ECMP) routing to aggregate the four connections across the two Regions. Attach the Direct Connect gateway directly to each VPC's virtual private gateway.

B.

Create a Direct Connect gateway. Create a transit gateway. Attach the transit gateway to the Direct Connect gateway. Create a transit VIF on each of the Direct Connect connections. Attach the transit VIFs to the Direct Connect gateway. Use a link aggregation group (LAG) to aggregate the four connections across the two Regions. Attach the transit gateway directly to each VPC.

C.

Create a Direct Connect gateway. Create a transit gateway in each Region. Attach the transit gateways to the Direct Connect gateway. Create a transit VIF on each of the Direct Connect connections. Attach the transit VIFs to the Direct Connect gateway. Peer the transit gateways. Attach the transit gateways in each Region to the VPCs in the same Region.

D.

Create a Direct Connect gateway. Create a private VIF on each of the Direct Connect connections. Attach the private VIFs to the Direct Connect gateway. Use a link aggregation group (LAG) to aggregate the four connections across the two Regions. Create a transit gateway. Attach the transit gateway to the Direct Connect gateway. Attach the transit gateway directly to each VPC.

A company's application team is unable to launch new resources into its VPC. A network engineer discovers that the VPC has run out of usable IP addresses. The VPC CIDR block is 172.16.0.0/16.

Which additional CIDR block can the network engineer attach to the VPC?

A.

172.17.0.0/29

B.

10.0.0.0/16

C.

172.17.0.0/16

D.

192.168.0.0/16

A company has two AWS Direct Connect connections between Direct Connect locations and the company's on-premises environment in the US. The company uses the connections to communicate with AWS workloads that run in the us-east-1 Region. Thecompany has a transit gateway that connects several VPCs. The Direct Connect connections terminate at a Direct Connect gateway and the transit VIFs to the transit gateway.

The company recently acquired a smaller company that is based in Europe. The newly acquired company has only on-premises workloads. The newly acquired company does not

expect to run workloads on AWS for the next 3 years. However, the newly acquired company requires connectivity to the parent company's AWS resources in us-east-1 and to the

parent company's on-premises environment in the US. The parent company wants to use two new Direct Connect connections in Europe to provide the required connectivity.

Which solution will meet these requirements with the LEAST operational overhead for the newly acquired company?

A.

Associate new transit VIFs to the existing Direct Connect gateway. Configure the new transit VIFs to use Direct Connect SiteLink.

B.

Associate new transit VIFs to a new Direct Connect gateway and to a new transit gateway in the eu-west-1 Region. Use transit gateway peering to connect the transit gateways.

C.

Associate new private VIFs to the existing Direct Connect gateway. Configure the existing transit VIFs and the new private VIFs to use Direct Connect SiteLink.

D.

Associate new private VIFs to a new Direct Connect gateway and to a new VPC in us-east-1. Configure the existing transit VIFs and the new private VIFs to use Direct Connect SiteLink and AWS PrivateLink endpoints in the new VPC.

Page: 4 / 5
Total 288 questions
Copyright © 2014-2025 Solution2Pass. All Rights Reserved