Weekend Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmaspas7

Easiest Solution 2 Pass Your Certification Exams

AIF-C01 Amazon Web Services AWS Certified AI Practitioner Exam Free Practice Exam Questions (2025 Updated)

Prepare effectively for your Amazon Web Services AIF-C01 AWS Certified AI Practitioner Exam certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2025, ensuring you have the most current resources to build confidence and succeed on your first attempt.

Page: 2 / 3
Total 177 questions

A manufacturing company wants to create product descriptions in multiple languages.

Which AWS service will automate this task?

A.

Amazon Translate

B.

Amazon Transcribe

C.

Amazon Kendra

D.

Amazon Polly

A company is developing a new model to predict the prices of specific items. The model performed well on the training dataset. When the company deployed the model to production, the model's performance decreased significantly.

What should the company do to mitigate this problem?

A.

Reduce the volume of data that is used in training.

B.

Add hyperparameters to the model.

C.

Increase the volume of data that is used in training.

D.

Increase the model training time.

A company wants to identify harmful language in the comments section of social media posts by using an ML model. The company will not use labeled data to train the model. Which strategy should the company use to identify harmful language?

A.

Use Amazon Rekognition moderation.

B.

Use Amazon Comprehend toxicity detection.

C.

Use Amazon SageMaker AI built-in algorithms to train the model.

D.

Use Amazon Polly to monitor comments.

A publishing company built a Retrieval Augmented Generation (RAG) based solution to give its users the ability to interact with published content. New content is published daily. The company wants to provide a near real-time experience to users.

Which steps in the RAG pipeline should the company implement by using offline batch processing to meet these requirements? (Select TWO.)

A.

Generation of content embeddings

B.

Generation of embeddings for user queries

C.

Creation of the search index

D.

Retrieval of relevant content

E.

Response generation for the user

A financial company uses a generative AI model to assign credit limits to new customers. The company wants to make the decision-making process of the model more transparent to its customers.

A.

Use a rule-based system instead of an ML model.

B.

Apply explainable AI techniques to show customers which factors influenced the model's decision.

C.

Develop an interactive UI for customers and provide clear technical explanations about the system.

D.

Increase the accuracy of the model to reduce the need for transparency.

An accounting firm wants to implement a large language model (LLM) to automate document processing. The firm must proceed responsibly to avoid potential harms.

What should the firm do when developing and deploying the LLM? (Select TWO.)

A.

Include fairness metrics for model evaluation.

B.

Adjust the temperature parameter of the model.

C.

Modify the training data to mitigate bias.

D.

Avoid overfitting on the training data.

E.

Apply prompt engineering techniques.

A company wants to fine-tune an ML model that is hosted on Amazon Bedrock. The company wants to use its own sensitive data that is stored in private databases in a VPC. The data needs to stay within the company's private network.

Which solution will meet these requirements?

A.

Restrict access to Amazon Bedrock by using an AWS Identity and Access Management (IAM) service role.

B.

Restrict access to Amazon Bedrock by using an AWS Identity and Access Management (IAM) resource policy.

C.

Use AWS PrivateLink to connect the VPC and Amazon Bedrock.

D.

Use AWS Key Management Service (AWS KMS) keys to encrypt the data.

A retail company is tagging its product inventory. A tag is automatically assigned to each product based on the product description. The company created one product category by using a large language model (LLM) on Amazon Bedrock in few-shot learning mode.

The company collected a labeled dataset and wants to scale the solution to all product categories.

Which solution meets these requirements?

A.

Use prompt engineering with zero-shot learning.

B.

Use prompt engineering with prompt templates.

C.

Customize the model with continued pre-training.

D.

Customize the model with fine-tuning.

An AI practitioner trained a custom model on Amazon Bedrock by using a training dataset that contains confidential data. The AI practitioner wants to ensure that the custom model does not generate inference responses based on confidential data.

How should the AI practitioner prevent responses based on confidential data?

A.

Delete the custom model. Remove the confidential data from the training dataset. Retrain the custom model.

B.

Mask the confidential data in the inference responses by using dynamic data masking.

C.

Encrypt the confidential data in the inference responses by using Amazon SageMaker.

D.

Encrypt the confidential data in the custom model by using AWS Key Management Service (AWS KMS).

A pharmaceutical company wants to analyze user reviews of new medications and provide a concise overview for each medication. Which solution meets these requirements?

A.

Create a time-series forecasting model to analyze the medication reviews by using Amazon Personalize.

B.

Create medication review summaries by using Amazon Bedrock large language models (LLMs).

C.

Create a classification model that categorizes medications into different groups by using Amazon SageMaker.

D.

Create medication review summaries by using Amazon Rekognition.

A student at a university is copying content from generative AI to write essays.

Which challenge of responsible generative AI does this scenario represent?

A.

Toxicity

B.

Hallucinations

C.

Plagiarism

D.

Privacy

A company is using few-shot prompting on a base model that is hosted on Amazon Bedrock. The model currently uses 10 examples in the prompt. The model is invoked once daily and is performing well. The company wants to lower the monthly cost.

Which solution will meet these requirements?

A.

Customize the model by using fine-tuning.

B.

Decrease the number of tokens in the prompt.

C.

Increase the number of tokens in the prompt.

D.

Use Provisioned Throughput.

A company wants to use a large language model (LLM) to develop a conversational agent. The company needs to prevent the LLM from being manipulated with common prompt engineering techniques to perform undesirable actions or expose sensitive information.

Which action will reduce these risks?

A.

Create a prompt template that teaches the LLM to detect attack patterns.

B.

Increase the temperature parameter on invocation requests to the LLM.

C.

Avoid using LLMs that are not listed in Amazon SageMaker.

D.

Decrease the number of input tokens on invocations of the LLM.

A company trained an ML model on Amazon SageMaker to predict customer credit risk. The model shows 90% recall on training data and 40% recall on unseen testing data.

Which conclusion can the company draw from these results?

A.

The model is overfitting on the training data.

B.

The model is underfitting on the training data.

C.

The model has insufficient training data.

D.

The model has insufficient testing data.

How can companies use large language models (LLMs) securely on Amazon Bedrock?

A.

Design clear and specific prompts. Configure AWS Identity and Access Management (IAM) roles and policies by using least privilege access.

B.

Enable AWS Audit Manager for automatic model evaluation jobs.

C.

Enable Amazon Bedrock automatic model evaluation jobs.

D.

Use Amazon CloudWatch Logs to make models explainable and to monitor for bias.

A company wants to deploy a conversational chatbot to answer customer questions. The chatbot is based on a fine-tuned Amazon SageMaker JumpStart model. The application must comply with multiple regulatory frameworks.

Which capabilities can the company show compliance for? (Select TWO.)

A.

Auto scaling inference endpoints

B.

Threat detection

C.

Data protection

D.

Cost optimization

E.

Loosely coupled microservices

A company has terabytes of data in a database that the company can use for business analysis. The company wants to build an AI-based application that can build a SQL query from input text that employees provide. The employees have minimal experience with technology.

Which solution meets these requirements?

A.

Generative pre-trained transformers (GPT)

B.

Residual neural network

C.

Support vector machine

D.

WaveNet

A company has built a solution by using generative AI. The solution uses large language models (LLMs) to translate training manuals from English into other languages. The company wants to evaluate the accuracy of the solution by examining the text generated for the manuals.

Which model evaluation strategy meets these requirements?

A.

Bilingual Evaluation Understudy (BLEU)

B.

Root mean squared error (RMSE)

C.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE)

D.

F1 score

Which option is a characteristic of AI governance frameworks for building trust and deploying human-centered AI technologies?

A.

Expanding initiatives across business units to create long-term business value

B.

Ensuring alignment with business standards, revenue goals, and stakeholder expectations

C.

Overcoming challenges to drive business transformation and growth

D.

Developing policies and guidelines for data, transparency, responsible AI, and compliance\

Which technique involves training AI models on labeled datasets to adapt the models to specific industry terminology and requirements?

A.

Data augmentation

B.

Fine-tuning

C.

Model quantization

D.

Continuous pre-training

Page: 2 / 3
Total 177 questions
Copyright © 2014-2025 Solution2Pass. All Rights Reserved