Summer Sale Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: s2p65

Easiest Solution 2 Pass Your Certification Exams

AIF-C01 Amazon Web Services AWS Certified AI Practitioner Exam Free Practice Exam Questions (2025 Updated)

Prepare effectively for your Amazon Web Services AIF-C01 AWS Certified AI Practitioner Exam certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2025, ensuring you have the most current resources to build confidence and succeed on your first attempt.

Page: 3 / 3
Total 224 questions

A company needs to log all requests made to its Amazon Bedrock API. The company must retain the logs securely for 5 years at the lowest possible cost.

Which combination of AWS service and storage class meets these requirements? (Select TWO.)

A.

AWS CloudTrail

B.

Amazon CloudWatch

C.

AWS Audit Manager

D.

Amazon S3 Intelligent-Tiering

E.

Amazon S3 Standard

What are tokens in the context of generative AI models?

A.

Tokens are the basic units of input and output that a generative AI model operates on, representing words, subwords, or other linguistic units.

B.

Tokens are the mathematical representations of words or concepts used in generative AI models.

C.

Tokens are the pre-trained weights of a generative AI model that are fine-tuned for specific tasks.

D.

Tokens are the specific prompts or instructions given to a generative AI model to generate output.

Which term describes the numerical representations of real-world objects and concepts that AI and natural language processing (NLP) models use to improve understanding of textual information?

A.

Embeddings

B.

Tokens

C.

Models

D.

Binaries

A company has developed an ML model for image classification. The company wants to deploy the model to production so that a web application can use the model.

The company needs to implement a solution to host the model and serve predictions without managing any of the underlying infrastructure.

Which solution will meet these requirements?

A.

Use Amazon SageMaker Serverless Inference to deploy the model.

B.

Use Amazon CloudFront to deploy the model.

C.

Use Amazon API Gateway to host the model and serve predictions.

D.

Use AWS Batch to host the model and serve predictions.

An airline company wants to build a conversational AI assistant to answer customer questions about flight schedules, booking, and payments. The company wants to use large language models (LLMs) and a knowledge base to create a text-based chatbot interface.

Which solution will meet these requirements with the LEAST development effort?

A.

Train models on Amazon SageMaker Autopilot.

B.

Develop a Retrieval Augmented Generation (RAG) agent by using Amazon Bedrock.

C.

Create a Python application by using Amazon Q Developer.

D.

Fine-tune models on Amazon SageMaker Jumpstart.

A software company wants to use a large language model (LLM) for workflow automation. The application will transform user messages into JSON files. The company will use the JSON files as inputs for data pipelines.

The company has a labeled dataset that contains user messages and output JSON files.

Which solution will train the LLM for workflow automation?

A.

Unsupervised learning

B.

Continued pre-training

C.

Fine-tuning

D.

Reinforcement learning from human feedback (RLHF)

A financial institution is building an AI solution to make loan approval decisions by using a foundation model (FM). For security and audit purposes, the company needs the AI solution's decisions to be explainable.

Which factor relates to the explainability of the AI solution's decisions?

A.

Model complexity

B.

Training time

C.

Number of hyperparameters

D.

Deployment time

HOTSPOT

Select the correct AI term from the following list for each statement. Each AI term should be selected one time. (Select THREE.)

• AI

• Deep learning

• ML

A company has multiple datasets that contain historical data. The company wants to use ML technologies to process each dataset.

Select the correct ML technology from the following list for each dataset. Select each ML technology one time or not at all. (Select THREE.)

    Computer vision

    Natural language processing (NLP)

    Reinforcement learning

    Time series forecasting

A company wants to use large language models (LLMs) with Amazon Bedrock to develop a chat interface for the company's product manuals. The manuals are stored as PDF files.

Which solution meets these requirements MOST cost-effectively?

A.

Use prompt engineering to add one PDF file as context to the user prompt when the prompt is submitted to Amazon Bedrock.

B.

Use prompt engineering to add all the PDF files as context to the user prompt when the prompt is submitted to Amazon Bedrock.

C.

Use all the PDF documents to fine-tune a model with Amazon Bedrock. Use the fine-tuned model to process user prompts.

D.

Upload PDF documents to an Amazon Bedrock knowledge base. Use the knowledge base to provide context when users submit prompts to Amazon Bedrock.

A food service company wants to develop an ML model to help decrease daily food waste and increase sales revenue. The company needs to continuously improve the model's accuracy.

Which solution meets these requirements?

A.

Use Amazon SageMaker AI and iterate with the most recent data.

B.

Use Amazon Personalize and iterate with historical data.

C.

Use Amazon CloudWatch to analyze customer orders.

D.

Use Amazon Rekognition to optimize the model.

A bank has fine-tuned a large language model (LLM) to expedite the loan approval process. During an external audit of the model, the company discovered that the model was approving loans at a faster pace for a specific demographic than for other demographics.

How should the bank fix this issue MOST cost-effectively?

A.

Include more diverse training data. Fine-tune the model again by using the new data.

B.

Use Retrieval Augmented Generation (RAG) with the fine-tuned model.

C.

Use AWS Trusted Advisor checks to eliminate bias.

D.

Pre-train a new LLM with more diverse training data.

A medical company deployed a disease detection model on Amazon Bedrock. To comply with privacy policies, the company wants to prevent the model from including personal patient information in its responses. The company also wants to receive notification when policy violations occur.

Which solution meets these requirements?

A.

Use Amazon Macie to scan the model's output for sensitive data and set up alerts for potential violations.

B.

Configure AWS CloudTrail to monitor the model's responses and create alerts for any detected personal information.

C.

Use Guardrails for Amazon Bedrock to filter content. Set up Amazon CloudWatch alarms for notification of policy violations.

D.

Implement Amazon SageMaker Model Monitor to detect data drift and receive alerts when model quality degrades.

A company is using a generative AI model to develop a digital assistant. The model's responses occasionally include undesirable and potentially harmful content. Select the correct Amazon Bedrock filter policy from the following list for each mitigation action. Each filter policy should be selected one time. (Select FOUR.)

• Content filters

• Contextual grounding check

• Denied topics

• Word filters

A company makes forecasts each quarter to decide how to optimize operations to meet expected demand. The company uses ML models to make these forecasts.

An AI practitioner is writing a report about the trained ML models to provide transparency and explainability to company stakeholders.

What should the AI practitioner include in the report to meet the transparency and explainability requirements?

A.

Code for model training

B.

Partial dependence plots (PDPs)

C.

Sample data for training

D.

Model convergence tables

A medical company is customizing a foundation model (FM) for diagnostic purposes. The company needs the model to be transparent and explainable to meet regulatory requirements.

Which solution will meet these requirements?

A.

Configure the security and compliance by using Amazon Inspector.

B.

Generate simple metrics, reports, and examples by using Amazon SageMaker Clarify.

C.

Encrypt and secure training data by using Amazon Macie.

D.

Gather more data. Use Amazon Rekognition to add custom labels to the data.

Which technique breaks a complex task into smaller subtasks that are sent sequentially to a large language model (LLM)?

A.

One-shot prompting

B.

Prompt chaining

C.

Tree of thoughts

D.

Retrieval Augmented Generation (RAG)

A financial company is developing a fraud detection system that flags potential fraud cases in credit card transactions. Employees will evaluate the flagged fraud cases. The company wants to minimize the amount of time the employees spend reviewing flagged fraud cases that are not actually fraudulent.

Which evaluation metric meets these requirements?

A.

Recall

B.

Accuracy

C.

Precision

D.

Lift chart

Page: 3 / 3
Total 224 questions
Copyright © 2014-2025 Solution2Pass. All Rights Reserved