Weekend Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmaspas7

Easiest Solution 2 Pass Your Certification Exams

MLS-C01 Amazon Web Services AWS Certified Machine Learning - Specialty Free Practice Exam Questions (2025 Updated)

Prepare effectively for your Amazon Web Services MLS-C01 AWS Certified Machine Learning - Specialty certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2025, ensuring you have the most current resources to build confidence and succeed on your first attempt.

Page: 1 / 5
Total 330 questions

A company has raw user and transaction data stored in AmazonS3 a MySQL database, and Amazon RedShift A Data Scientist needs to perform an analysis by joining the three datasets from Amazon S3, MySQL, and Amazon RedShift, and then calculating the average-of a few selected columns from the joined data

Which AWS service should the Data Scientist use?

A.

Amazon Athena

B.

Amazon Redshift Spectrum

C.

AWS Glue

D.

Amazon QuickSight

A company wants to use machine learning (ML) to improve its customer churn prediction model. The company stores data in an Amazon Redshift data warehouse.

A data science team wants to use Amazon Redshift machine learning (Amazon Redshift ML) to build a model and run predictions for new data directly within the data warehouse.

Which combination of steps should the company take to use Amazon Redshift ML to meet these requirements? (Select THREE.)

A.

Define the feature variables and target variable for the churn prediction model.

B.

Use the SQL EXPLAIN_MODEL function to run predictions.

C.

Write a CREATE MODEL SQL statement to create a model.

D.

Use Amazon Redshift Spectrum to train the model.

E.

Manually export the training data to Amazon S3.

F.

Use the SQL prediction function to run predictions,

A data scientist is using an Amazon SageMaker notebook instance and needs to securely access data stored in a specific Amazon S3 bucket.

How should the data scientist accomplish this?

A.

Add an S3 bucket policy allowing GetObject, PutObject, and ListBucket permissions to the Amazon SageMaker notebook ARN as principal.

B.

Encrypt the objects in the S3 bucket with a custom AWS Key Management Service (AWS KMS) key that only the notebook owner has access to.

C.

Attach the policy to the IAM role associated with the notebook that allows GetObject, PutObject, and ListBucket operations to the specific S3 bucket.

D.

Use a script in a lifecycle configuration to configure the AWS CLI on the instance with an access key ID and secret.

A machine learning (ML) specialist is using the Amazon SageMaker DeepAR forecasting algorithm to train a model on CPU-based Amazon EC2 On-Demand instances. The model currently takes multiple hours to train. The ML specialist wants to decrease the training time of the model.

Which approaches will meet this requirement7 (SELECT TWO )

A.

Replace On-Demand Instances with Spot Instances

B.

Configure model auto scaling dynamically to adjust the number of instances automatically.

C.

Replace CPU-based EC2 instances with GPU-based EC2 instances.

D.

Use multiple training instances.

E.

Use a pre-trained version of the model. Run incremental training.

A machine learning (ML) specialist uploads a dataset to an Amazon S3 bucket that is protected by server-side encryption with AWS KMS keys (SSE-KMS). The ML specialist needs to ensure that an Amazon SageMaker notebook instance can read the dataset that is in Amazon S3.

Which solution will meet these requirements?

A.

Define security groups to allow all HTTP inbound and outbound traffic. Assign the security groups to the SageMaker notebook instance.

B.

Configure the SageMaker notebook instance to have access to the VPC. Grant permission in the AWS Key Management Service (AWS KMS) key policy to the notebook's VPC.

C.

Assign an IAM role that provides S3 read access for the dataset to the SageMaker notebook. Grant permission in the KMS key policy to the 1AM role.

D.

Assign the same KMS key that encrypts the data in Amazon S3 to the SageMaker notebook instance.

A machine learning specialist works for a fruit processing company and needs to build a system that

categorizes apples into three types. The specialist has collected a dataset that contains 150 images for each type of apple and applied transfer learning on a neural network that was pretrained on ImageNet with this dataset.

The company requires at least 85% accuracy to make use of the model.

After an exhaustive grid search, the optimal hyperparameters produced the following:

68% accuracy on the training set

67% accuracy on the validation set

What can the machine learning specialist do to improve the system’s accuracy?

A.

Upload the model to an Amazon SageMaker notebook instance and use the Amazon SageMaker HPO feature to optimize the model’s hyperparameters.

B.

Add more data to the training set and retrain the model using transfer learning to reduce the bias.

C.

Use a neural network model with more layers that are pretrained on ImageNet and apply transfer learning to increase the variance.

D.

Train a new model using the current neural network architecture.

A Machine Learning Specialist is building a prediction model for a large number of features using linear models, such as linear regression and logistic regression During exploratory data analysis the Specialist observes that many features are highly correlated with each other This may make the model unstable

What should be done to reduce the impact of having such a large number of features?

A.

Perform one-hot encoding on highly correlated features

B.

Use matrix multiplication on highly correlated features.

C.

Create a new feature space using principal component analysis (PCA)

D.

Apply the Pearson correlation coefficient

A Data Science team within a large company uses Amazon SageMaker notebooks to access data stored in Amazon S3 buckets. The IT Security team is concerned that internet-enabled notebook instances create a security vulnerability where malicious code running on the instances could compromise data privacy. The company mandates that all instances stay within a secured VPC with no internet access, and data communication traffic must stay within the AWS network.

How should the Data Science team configure the notebook instance placement to meet these requirements?

A.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Place the Amazon SageMaker endpoint and S3 buckets within the same VPC.

B.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Use 1AM policies to grant access to Amazon S3 and Amazon SageMaker.

C.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has S3 VPC endpoints and Amazon SageMaker VPC endpoints attached to it.

D.

Associate the Amazon SageMaker notebook with a private subnet in a VPC. Ensure the VPC has a NAT gateway and an associated security group allowing only outbound connections to Amazon S3 and Amazon SageMaker

A university wants to develop a targeted recruitment strategy to increase new student enrollment. A data scientist gathers information about the academic performance history of students. The data scientist wants to use the data to build student profiles. The university will use the profiles to direct resources to recruit students who are likely to enroll in the university.

Which combination of steps should the data scientist take to predict whether a particular student applicant is likely to enroll in the university? (Select TWO)

A.

Use Amazon SageMaker Ground Truth to sort the data into two groups named "enrolled" or "not enrolled."

B.

Use a forecasting algorithm to run predictions.

C.

Use a regression algorithm to run predictions.

D.

Use a classification algorithm to run predictions

E.

Use the built-in Amazon SageMaker k-means algorithm to cluster the data into two groups named "enrolled" or "not enrolled."

A Machine Learning Specialist is designing a scalable data storage solution for Amazon SageMaker. There is an existing TensorFlow-based model implemented as a train.py script that relies on static training data that is currently stored as TFRecords.

Which method of providing training data to Amazon SageMaker would meet the business requirements with the LEAST development overhead?

A.

Use Amazon SageMaker script mode and use train.py unchanged. Point the Amazon SageMaker training invocation to the local path of the data without reformatting the training data.

B.

Use Amazon SageMaker script mode and use train.py unchanged. Put the TFRecord data into an Amazon S3 bucket. Point the Amazon SageMaker training invocation to the S3 bucket without reformatting the training data.

C.

Rewrite the train.py script to add a section that converts TFRecords to protobuf and ingests the protobuf data instead of TFRecords.

D.

Prepare the data in the format accepted by Amazon SageMaker. Use AWS Glue or AWS Lambda to reformat and store the data in an Amazon S3 bucket.

A company's machine learning (ML) specialist is designing a scalable data storage solution for Amazon SageMaker. The company has an existing TensorFlow-based model that uses a train.py script. The model relies on static training data that is currently stored in TFRecord format.

What should the ML specialist do to provide the training data to SageMaker with the LEAST development overhead?

A.

Put the TFRecord data into an Amazon S3 bucket. Use AWS Glue or AWS Lambda to reformat the data to protobuf format and store the data in a second S3 bucket. Point the SageMaker training invocation to the second S3 bucket.

B.

Rewrite the train.py script to add a section that converts TFRecord data to protobuf format. Point the SageMaker training invocation to the local path of the data. Ingest the protobuf data instead of the TFRecord data.

C.

Use SageMaker script mode, and use train.py unchanged. Point the SageMaker training invocation to the local path of the data without reformatting the training data.

D.

Use SageMaker script mode, and use train.py unchanged. Put the TFRecord data into an Amazon S3 bucket. Point the SageMaker training invocation to the S3 bucket without reformatting the training data.

A Machine Learning Specialist needs to move and transform data in preparation for training Some of the data needs to be processed in near-real time and other data can be moved hourly There are existing Amazon EMR MapReduce jobs to clean and feature engineering to perform on the data

Which of the following services can feed data to the MapReduce jobs? (Select TWO )

A.

AWSDMS

B.

Amazon Kinesis

C.

AWS Data Pipeline

D.

Amazon Athena

E.

Amazon ES

A Machine Learning Specialist is developing a daily ETL workflow containing multiple ETL jobs The workflow consists of the following processes

* Start the workflow as soon as data is uploaded to Amazon S3

* When all the datasets are available in Amazon S3, start an ETL job to join the uploaded datasets with multiple terabyte-sized datasets already stored in Amazon S3

* Store the results of joining datasets in Amazon S3

* If one of the jobs fails, send a notification to the Administrator

Which configuration will meet these requirements?

A.

Use AWS Lambda to trigger an AWS Step Functions workflow to wait for dataset uploads to complete in Amazon S3. Use AWS Glue to join the datasets Use an Amazon CloudWatch alarm to send an SNS notification to the Administrator in the case of a failure

B.

Develop the ETL workflow using AWS Lambda to start an Amazon SageMaker notebook instance Use a lifecycle configuration script to join the datasets and persist the results in Amazon S3 Use an Amazon CloudWatch alarm to send an SNS notification to the Administrator in the case of a failure

C.

Develop the ETL workflow using AWS Batch to trigger the start of ETL jobs when data is uploaded to Amazon S3 Use AWS Glue to join the datasets in Amazon S3 Use an Amazon CloudWatch alarm to send an SNS notification to the Administrator in the case of a failure

D.

Use AWS Lambda to chain other Lambda functions to read and join the datasets in Amazon S3 as soon as the data is uploaded to Amazon S3 Use an Amazon CloudWatch alarm to send an SNS notification to the Administrator in the case of a failure

A manufacturing company wants to monitor its devices for anomalous behavior. A data scientist has trained an Amazon SageMaker scikit-learn model that classifies a device as normal or anomalous based on its 4-day telemetry. The 4-day telemetry of each device is collected in a separate file and is placed in an Amazon S3 bucket once every hour. The total time to run the model across the telemetry for all devices is 5 minutes.

What is the MOST cost-effective solution for the company to use to run the model across the telemetry for all the devices?

A.

SageMaker Batch Transform

B.

SageMaker Asynchronous Inference

C.

SageMaker Processing

D.

A SageMaker multi-container endpoint

Example Corp has an annual sale event from October to December. The company has sequential sales data from the past 15 years and wants to use Amazon ML to predict the sales for this year's upcoming event. Which method should Example Corp use to split the data into a training dataset and evaluation dataset?

A.

Pre-split the data before uploading to Amazon S3

B.

Have Amazon ML split the data randomly.

C.

Have Amazon ML split the data sequentially.

D.

Perform custom cross-validation on the data

A retail company collects customer comments about its products from social media, the company website, and customer call logs. A team of data scientists and engineers wants to find common topics and determine which products the customers are referring to in their comments. The team is using natural language processing (NLP) to build a model to help with this classification.

Each product can be classified into multiple categories that the company defines. These categories are related but are not mutually exclusive. For example, if there is mention of "Sample Yogurt" in the document of customer comments, then "Sample Yogurt" should be classified as "yogurt," "snack," and "dairy product."

The team is using Amazon Comprehend to train the model and must complete the project as soon as possible.

Which functionality of Amazon Comprehend should the team use to meet these requirements?

A.

Custom classification with multi-class mode

B.

Custom classification with multi-label mode

C.

Custom entity recognition

D.

Built-in models

A company has a podcast platform that has thousands of users. The company implemented an algorithm to detect low podcast engagement based on a 10-minute running window of user events such as listening to. pausing, and closing the podcast. A machine learning (ML) specialist is designing the ingestion process for these events. The ML specialist needs to transform the data to prepare the data for inference.

How should the ML specialist design the transformation step to meet these requirements with the LEAST operational effort?

A.

Use an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster to ingest event data. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to transform the most recent 10 minutes of data before inference.

B.

Use Amazon Kinesis Data Streams to ingest event data. Store the data in Amazon S3 by using Amazon Data Firehose. Use AWS Lambda to transform the most recent 10 minutes of data before inference.

C.

Use Amazon Kinesis Data Streams to ingest event data. Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to transform the most recent 10 minutes of data before inference.

D.

Use an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster to ingest event data. Use AWS Lambda to transform the most recent 10 minutes of data before inference.

A machine learning (ML) specialist wants to create a data preparation job that uses a PySpark script with complex window aggregation operations to create data for training and testing. The ML specialist needs to evaluate the impact of the number of features and the sample count on model performance.

Which approach should the ML specialist use to determine the ideal data transformations for the model?

A.

Add an Amazon SageMaker Debugger hook to the script to capture key metrics. Run the script as an AWS Glue job.

B.

Add an Amazon SageMaker Experiments tracker to the script to capture key metrics. Run the script as an AWS Glue job.

C.

Add an Amazon SageMaker Debugger hook to the script to capture key parameters. Run the script as a SageMaker processing job.

D.

Add an Amazon SageMaker Experiments tracker to the script to capture key parameters. Run the script as a SageMaker processing job.

A company's machine learning (ML) specialist is building a computer vision model to classify 10 different traffic signs. The company has stored 100 images of each class in Amazon S3, and the company has another 10.000 unlabeled images. All the images come from dash cameras and are a size of 224 pixels * 224 pixels. After several training runs, the model is overfitting on the training data.

Which actions should the ML specialist take to address this problem? (Select TWO.)

A.

Use Amazon SageMaker Ground Truth to label the unlabeled images

B.

Use image preprocessing to transform the images into grayscale images.

C.

Use data augmentation to rotate and translate the labeled images.

D.

Replace the activation of the last layer with a sigmoid.

E.

Use the Amazon SageMaker k-nearest neighbors (k-NN) algorithm to label the unlabeled images.

A Data Science team is designing a dataset repository where it will store a large amount of training data commonly used in its machine learning models. As Data Scientists may create an arbitrary number of new datasets every day the solution has to scale automatically and be cost-effective. Also, it must be possible to explore the data using SQL.

Which storage scheme is MOST adapted to this scenario?

A.

Store datasets as files in Amazon S3.

B.

Store datasets as files in an Amazon EBS volume attached to an Amazon EC2 instance.

C.

Store datasets as tables in a multi-node Amazon Redshift cluster.

D.

Store datasets as global tables in Amazon DynamoDB.

Page: 1 / 5
Total 330 questions
Copyright © 2014-2025 Solution2Pass. All Rights Reserved