Weekend Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmaspas7

Easiest Solution 2 Pass Your Certification Exams

SAP-C02 Amazon Web Services AWS Certified Solutions Architect - Professional Free Practice Exam Questions (2025 Updated)

Prepare effectively for your Amazon Web Services SAP-C02 AWS Certified Solutions Architect - Professional certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2025, ensuring you have the most current resources to build confidence and succeed on your first attempt.

Page: 5 / 6
Total 562 questions

A company hosts a game player-matching service on a public-facing, physical, on-premises instance that all users are able to access over the instance uses UDP. The company wants to migrate the service to AWS and provide a high level of security. A solutions architect needs to de matching service using AWS.

Which combination of steps should the solutions architect take to meet these requirements? (Select THREE.)

A.

Use a Network Load Balancer (NLB) in front of the player-matching instance. Use a friendly DNS entry in Amazon Route 53-point address.

B.

Use an Application Load Balancer (ALB) in front of the player-matching instance. Use a friendly DNS entry in Amazon Route 53 p facing fully qualified domain name (FQDN).

C.

Define an AWS WAF rule to explicitly drop non-UDP traffic, and associate the rule with the load balancer.

D.

Configure a network ACL rule to block all non-UDP traffic. Associate the network ACL with the subnets that hold the load balance

A company is running an event ticketing platform on AWS and wants to optimize the platform's cost-effectiveness. The platform is deployed on Amazon Elastic Kubernetes Service (Amazon EKS) with Amazon EC2 and is backed by an Amazon RDS for MySQL DB instance. The company is developing new application features to run on Amazon EKS with AWS Fargate.

The platform experiences infrequent high peaks in demand. The surges in demand depend on event dates.

Which solution will provide the MOST cost-effective setup for the platform?

A.

Purchase Standard Reserved Instances for the EC2 instances that the EKS cluster uses in its baseline load. Scale the cluster with Spot Instances to handle peaks. Purchase 1-year All Upfront Reserved Instances for the database to meet predicted peak load for the year.

B.

Purchase Compute Savings Plans for the predicted medium load of the EKS cluster. Scale the cluster with On-Demand Capacity Reservations based on event dates for peaks. Purchase 1-year No Upfront Reserved Instances for the database to meet the predicted base load. Temporarily scale out database read replicas during peaks.

C.

Purchase EC2 Instance Savings Plans for the predicted base load of the EKS cluster. Scale the cluster with Spot Instances to handle peaks. Purchase 1-year All Upfront Reserved Instances for the database to meet the predicted base load. Temporarily scale up the DB instance manually during peaks.

D.

Purchase Compute Savings Plans for the predicted base load of the EKS cluster. Scale the cluster with Spot Instances to handle peaks. Purchase 1-year All Upfront Reserved Instances for the database to meet the predicted base load. Temporarily scale up the DB instance manually during peaks.

A company has many separate AWS accounts and uses no central billing or management. Each AWS account hosts services for different departments in the company. The company has a Microsoft Azure Active Directory that is deployed.

A solution architect needs to centralize billing and management of the company’s AWS accounts. The company wants to start using identify federation instead of manual user management. The company also wants to use temporary credentials instead of long-lived access keys.

Which combination of steps will meet these requirements? (Select THREE)

A.

Create a new AWS account to serve as a management account. Deploy an organization in AWS Organizations. Invite each existing AWS account to join the organization. Ensure that each account accepts the invitation.

B.

Configure each AWS Account’s email address to be aws+@example.com so that account management email messages and invoices are sent to the same place.

C.

Deploy AWS IAM Identity Center (AWS Single Sign-On) in the management account. Connect IAM Identity Center to the Azure Active Directory. Configure IAM Identity Center for automatic synchronization of users and groups.

D.

Deploy an AWS Managed Microsoft AD directory in the management account. Share the directory with all other accounts in the organization by using AWS Resource Access Manager (AWS RAM).

E.

Create AWS IAM Identity Center (AWS Single Sign-On) permission sets. Attach the permission sets to the appropriate IAM Identity Center groups and AWS accounts.

F.

Configure AWS Identity and Access Management (IAM) in each AWS account to use AWS Managed Microsoft AD for authentication and authorization.

A company is planning to migrate to the AWS Cloud. The company hosts many applications on Windows servers and Linux servers. Some of the servers are physical, and some of the servers are virtual. The company uses several types of databases in its on-premises environment. The company does not have an accurate inventory of its on-premises servers and applications.

The company wants to rightsize its resources during migration. A solutions architect needs to obtain information about the network connections and the application relationships. The solutions architect must assess the company's current environment and develop a migration plan.

Which solution will provide the solutions architect with the required information to develop the migration plan?

A.

Use Migration Evaluator to request an evaluation of the environment from AWS. Use the AWS Application Discovery Service Agentless Collector to import the details into a Migration Evaluator Quick Insights report.

B.

Use AWS Migration Hub and install the AWS Application Discovery Agent on the servers. Deploy the Migration Hub Strategy Recommendations application data collector. Generate a report by using Migration Hub Strategy Recommendations.

C.

Use AWS Migration Hub and run the AWS Application Discovery Service Agentless Collector on the servers. Group the servers and databases by using AWS Application Migration Service. Generate a report by using Migration Hub Strategy Recommendations.

D.

Use the AWS Migration Hub import tool to load the details of the company's on-premises environment. Generate a report by using Migration Hub Strategy Recommendations.

A company runs an application on AWS. The company curates data from several different sources. The company uses proprietary algorithms to perform data transformations and aggregations. After the company performs E TL processes, the company stores the results in Amazon Redshift tables. The company sells this data to other companies. The company downloads the data as files from the Amazon Redshift tables and transmits the files to several data customers by using FTP. The number of data customers has grown significantly. Management of the data customers has become difficult.

The company will use AWS Data Exchange to create a data product that the company can use to share data with customers. The company wants to confirm the identities of the customers before the company shares data. The customers also need access to the most recent data when the company publishes the data.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use AWS Data Exchange for APIs to share data with customers. Configure subscription verification. In the AWS account of the company that produces the data, create an Amazon API Gateway Data API service integration with Amazon Redshift. Require the data customers to subscribe to the data product.

B.

In the AWS account of the company that produces the data, create an AWS Data Exchange datashare by connecting AWS Data Exchange to the Redshift cluster. Configure subscription verification. Require the data customers to subscribe to the data product.

C.

Download the data from the Amazon Redshift tables to an Amazon S3 bucket periodically. Use AWS Data Exchange for S3 to share data with customers. Configure subscription verification. Require the data customers to subscribe to the data product.

D.

Publish the Amazon Redshift data to an Open Data on AWS Data Exchange. Require the customers to subscribe to the data product in AWS Data Exchange. In the AWS account of the company that produces the data, attach 1AM resource-based policies to the Amazon Redshift tables to allow access only to verified AWS accounts.

An online retail company hosts its stateful web-based application and MySQL database in an on-premises data center on a single server. The company wants to increase its customer base by conducting more marketing campaigns and promotions. In preparation, the company wants to migrate its application and database to AWS to increase the reliability of its architecture.

Which solution should provide the HIGHEST level of reliability?

A.

Migrate the database to an Amazon RDS MySQL Multi-AZ DB instance. Deploy the application in an Auto Scaling group on Amazon EC2 instances behind an Application Load Balancer. Store sessions in Amazon Neptune.

B.

Migrate the database to Amazon Aurora MySQL. Deploy the application in an Auto Scaling group on Amazon EC2 instances behind an Application Load Balancer. Store sessions in an Amazon ElastiCache for Redis replication group.

C.

Migrate the database to Amazon DocumentDB (with MongoDB compatibility). Deploy the application in an Auto Scaling group on Amazon EC2 instances behind a Network Load Balancer. Store sessions in Amazon Kinesis Data Firehose.

D.

Migrate the database to an Amazon RDS MariaDB Multi-AZ DB instance. Deploy the application in an Auto Scaling group on Amazon EC2 instances behind an Application Load Balancer. Store sessions in Amazon ElastiCache for Memcached.

A company's compliance audit reveals that some Amazon Elastic Block Store (Amazon EBS) volumes that were created in an AWS account were not encrypted. A solutions architect must Implement a solution to encrypt all new EBS volumes at rest

Which solution will meet this requirement with the LEAST effort?

A.

Create an Amazon EventBridge rule to detect the creation of unencrypted EBS volumes. Invoke an AWS Lambda function to delete noncompliant volumes.

B.

Use AWS Audit Manager with data encryption.

C.

Create an AWS Config rule to detect the creation of a new EBS volume. Encrypt the volume by using AWS Systems Manager Automation.

D.

Turn in EBS encryption by default in all AWS Regions.

A company is running several applications in the AWS Cloud. The applications are specific to separate business units in the company. The company is running the components of the applications in several AWS accounts that are in an organization in AWS Organizations. Every cloud resource in the company's organization has a tag that is named BusinessUnit. Every tag already has the appropriate value of the business unit name. The company needs to allocate its cloud costs to different business units. The company also needs to visualize the cloud costs for each business unit. Which solution will meet these requirements?

A.

In the organization's management account, create a cost allocation tag that is named BusinessUnit. Also in the management account, create an Amazon S3 bucket and an AWS Cost and Usage Report (AWS CUR). Configure the S3 bucket as the destination for the AWS CUR. From the management account, query the AWS CUR data by using Amazon Athena. Use Amazon QuickSight for visualization.

B.

In each member account, create a cost allocation tag that is named BusinessUnit. In the organization's management account, create an Amazon S3 bucket and an AWS Cost and Usage Report (AWS CUR). Configure the S3 bucket as the destination for the AWS CUR. Create an Amazon CloudWatch dashboard for visualization.

C.

In the organization's management account, create a cost allocation tag that is named BusinessUnit. In each member account, create an Amazon S3 bucket and an AWS Cost and Usage Report (AWS CUR). Configure each S3 bucket as the destination for its respective AWS CUR. In the management account, create an Amazon CloudWatch dashboard for visualization.

D.

In each member account, create a cost allocation tag that is named BusinessUnit. Also in each member account, create an Amazon S3 bucket and an AWS Cost and Usage Report (AWS CUR). Configure each S3 bucket as the destination for its respective AWS CUR. From the management account, query the AWS CUR data by using Amazon Athena. Use Amazon QuickSight for visualization.

A company is migrating some of its applications to AWS. The company wants to migrate and modernize the applications quickly after it finalizes networking and security strategies. The company has set up an AWS Direct Connection connection in a central network account.

The company expects to have hundreds of AWS accounts and VPCs in the near future. The corporate network must be able to access the resources on AWS seamlessly and also must be able to communicate with all the VPCs. The company also wants to route its cloud resources to the internet through its on-premises data center.

Which combination of steps will meet these requirements? (Choose three.)

A.

Create a Direct Connect gateway in the central account. In each of the accounts, create an association proposal by using the Direct Connect gateway and the account ID for every virtual private gateway.

B.

Create a Direct Connect gateway and a transit gateway in the central network account. Attach the transit gateway to the Direct Connect gateway by using a transit VIF.

C.

Provision an internet gateway. Attach the internet gateway to subnets. Allow internet traffic through the gateway.

D.

Share the transit gateway with other accounts. Attach VPCs to the transit gateway.

E.

Provision VPC peering as necessary.

F.

Provision only private subnets. Open the necessary route on the transit gateway and customergateway to allow outbound internet traffic from AWS to flow through NAT services that run in the data center.

A company runs an application in an on-premises data center. The application gives users the ability to upload media files. The files persist in a file server. The web application has many users. The application server is overutilized, which causes data uploads to fail occasionally. The company frequently adds new storage to the file server. The company wants to resolve these challenges by migrating the application to AWS.

Users from across the United States and Canada access the application. Only authenticated usersshould have the ability to access the application to upload files. The company will consider a solution that refactors the application, and the company needs to accelerate application development.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use AWS Application Migration Service to migrate the application server to Amazon EC2 instances. Create an Auto Scaling group for the EC2 instances. Use an Application Load Balancer to distribute the requests. Modify the application to use Amazon S3 to persist the files. Use Amazon Cognito to authenticate users.

B.

Use AWS Application Migration Service to migrate the application server to Amazon EC2 instances. Create an Auto Scaling group for the EC2 instances. Use an Application Load Balancer to distribute the requests. Set up AWS IAM Identity Center (AWS Single Sign-On) to give users the ability to sign in to the application. Modify the application to use Amazon S3 to persist the files.

C.

Create a static website for uploads of media files. Store the static assets in Amazon S3. Use AWS AppSync to create an API. Use AWS Lambda resolvers to upload the media files to Amazon S3. Use Amazon Cognito to authenticate users.

D.

Use AWS Amplify to create a static website for uploads of media files. Use Amplify Hosting to serve the website through Amazon CloudFront. Use Amazon S3 to store the uploaded media files. Use Amazon Cognito to authenticate users.

A company has deployed applications to thousands of Amazon EC2 instances in an AWS account. A security audit discovers that several unencrypted Amazon EBS volumes are attached to the EC2 instances. The company's security policy requires the EBS volumes to be encrypted.

The company needs to implement an automated solution to encrypt the EBS volumes. The solution also must prevent development teams from creating unencrypted EBS volumes.

Which solution will meet these requirements?

A.

Configure the AWS Config managed rule that identifies unencrypted EBS volumes. Configure an automatic remediation action. Associate an AWS Systems Manager Automation runbook that includes the steps to create a new encrypted EBS volume. Create an AWS KMS customer managed key. In the key policy, include a statement to deny the creation of unencrypted EBS volumes.

B.

Use AWS Systems Manager Fleet Manager to create a list of unencrypted EBS volumes. Create a Systems Manager Automation runbook that includes the steps to create a new encrypted EBS volume. Create an SCP to deny the creation of unencrypted EBS volumes.

C.

Use AWS Systems Manager Fleet Manager to create a list of unencrypted EBS volumes. Create a Systems Manager Automation runbook that includes the steps to create a new encrypted EBS volume. Modify the AWS account setting for EBS encryption to always encrypt new EBS volumes.

D.

Configure the AWS Config managed rule that identifies unencrypted EBS volumes. Configure an automatic remediation action. Associate an AWS Systems Manager Automation runbook that includes the steps to create a new encrypted EBS volume. Modify the AWS account setting for EBS encryption to always encrypt new EBS volumes.

A large payroll company recently merged with a small staffing company. The unified company now has multiple business units, each with its own existing AWS account.

A solutions architect must ensure that the company can centrally manage the billing and access policies for all the AWS accounts. The solutions architect configures AWS Organizations by sending an invitation to all member accounts of the company from a centralized management account.

What should the solutions architect do next to meet these requirements?

A.

Create the OrganizationAccountAccess IAM group in each member account. Include the necessary IAM roles for each administrator.

B.

Create the OrganizationAccountAccessPoIicy IAM policy in each member account. Connect the member accounts to the management account by using cross-account access.

C.

Create the OrganizationAccountAccessRoIe IAM role in each member account. Grant permission to the management account to assume the IAM role.

D.

Create the OrganizationAccountAccessRoIe IAM role in the management account. Attach the AdministratorAccess AWS managed policy to the IAM role.Assign the IAM role to the administrators in each member account.

A large mobile gaming company has successfully migrated all of its on-premises infrastructure tothe AWS Cloud. A solutions architect is reviewing the environment to ensure that it was built according to the design and that it is running in alignment with the Well-Architected Framework.

While reviewing previous monthly costs in Cost Explorer, the solutions architect notices that the creation and subsequent termination of several large instance types account for a high proportion of the costs. The solutions architect finds out that the company's developers are launching new Amazon EC2 instances as part of their testing and that the developers are not using the appropriate instance types.

The solutions architect must implement a control mechanism to limit the instance types that only the developers can launch.

Which solution will meet these requirements?

A.

Create a desired-instance-type managed rule in AWS Config. Configure the rule with the instance types that are allowed. Attach the rule to an event to run each time a new EC2 instance is launched.

B.

In the EC2 console, create a launch template that specifies the instance types that are allowed. Assign the launch template to the developers' IAM accounts.

C.

Create a new IAM policy. Specify the instance types that are allowed. Attach the policy to an IAM group that contains the IAM accounts for the developers

D.

Use EC2 Image Builder to create an image pipeline for the developers and assist them in the creation of a golden image.

A company uses an organization in AWS Organizations to manage the company's AWS accounts. The company uses AWS CloudFormation to deploy all infrastructure. A finance team wants to buikJ a chargeback model The finance team asked each business unit to tag resources by using a predefined list of project values.

When the finance team used the AWS Cost and Usage Report in AWS Cost Explorer and filtered based on project, the team noticed noncompliant project values. The company wants to enforce the use of project tags for new resources.

Which solution will meet these requirements with the LEAST effort?

A.

Create a tag policy that contains the allowed project tag values in the organization's management account. Create an SCP that denies the cloudformation:CreateStack API operation unless a project tag is added. Attach the SCP to each OU.

B.

Create a tag policy that contains the allowed project tag values in each OU. Create an SCP that denies the cloudformation:CreateStack API operation unless a project tag is added. Attach the SCP to each OU.

C.

Create a tag policy that contains the allowed project tag values in the AWS management account. Create an 1AM policy that denies the cloudformation:CreateStack API operation unless a project tag is added. Assign the policy to each user.

D.

Use AWS Service Catalog to manage the CloudFoanation stacks as products. Use a TagOptions library to control project tag values. Share the portfolio with all OUs that are in the organization.

A company wants to migrate its on-premises application to AWS. The database for the application stores structured product data and temporary user session data. The company needs to decouple the product data from the user session data. The company also needs to implement replication in another AWS Region for disaster recovery.

Which solution will meet these requirements with the HIGHEST performance?

A.

Create an Amazon RDS DB instance with separate schemas to host the product data and the user session data. Configure a read replica for the DB instance in another Region.

B.

Create an Amazon RDS DB instance to host the product data. Configure a read replica for the DB instance in another Region. Create a global datastore in Amazon ElastiCache for Memcached to host the user session data.

C.

Create two Amazon DynamoDB global tables. Use one global table to host the product data Use the other global table to host the user session data. Use DynamoDB Accelerator (DAX) for caching.

D.

Create an Amazon RDS DB instance to host the product data. Configure a read replica for the DB instance in another Region. Create an Amazon DynamoDB global table to host the user session data

A company hosts a Git repository in an on-premises data center. The company uses webhooks to invoke functionality that runs in the AWS Cloud. The company hosts the webhook logic on a set of Amazon EC2 instances in an Auto Scaling group that the company set as a target for an Application Load Balancer (ALB). The Git server calls the ALB for the configured webhooks. The company wants to move the solution to a serverless architecture.

Which solution will meet these requirements with the LEAST operational overhead?

A.

For each webhook, create and configure an AWS Lambda function URL. Update the Git servers to call the individual Lambda function URLs.

B.

Create an Amazon API Gateway HTTP API. Implement each webhook logic in a separate AWS Lambda function. Update the Git servers to call the API Gateway endpoint.

C.

Deploy the webhook logic to AWS App Runner. Create an ALB, and set App Runner as the target. Update the Git servers to call the ALB endpoint.

D.

Containerize the webhook logic. Create an Amazon Elastic Container Service (Amazon ECS) cluster, and run the webhook logic in AWS Fargate. Create an Amazon API Gateway REST API, and set Fargate as the target. Update the Git servers to call the API Gateway endpoint.

A delivery company needs to migrate its third-party route planning application to AWS. The third party supplies a supported Docker image from a public registry. The image can run in as many containers as required to generate the route map.

The company has divided the delivery area into sections with supply hubs so that delivery drivers travel the shortest distance possible from the hubs to the customers. To reduce the time necessary to generate route maps, each section uses its own set of Docker containers with a custom configuration that processes orders only in the section's area.

The company needs the ability to allocate resources cost-effectively based on the number of running containers.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an Amazon Elastic Kubernetes Service (Amazon EKS) cluster on Amazon EC2. Use the Amazon EKS CLI to launch the planning application in pods by using the -tags option to assign a custom tag to the pod.

B.

Create an Amazon Elastic Kubernetes Service (Amazon EKS) cluster on AWS Fargate. Use the Amazon EKS CLI to launch the planning application. Use the AWS CLI tag-resource API call to assign a custom tag to the pod.

C.

Create an Amazon Elastic Container Service (Amazon ECS) cluster on Amazon EC2. Use the AWS CLI with run-tasks set to true to launch the planning application by using the -tags option to assign a custom tag to the task.

D.

Create an Amazon Elastic Container Service (Amazon ECS) cluster on AWS Fargate. Use the AWS CLI run-task command and set enableECSManagedTags to true to launch the planning application. Use the --tags option to assign a custom tag to the task.

A research company is running daily simul-ations in the AWS Cloud to meet high demand. The simu-lations run on several hundred Amazon EC2 instances that are based on Amazon Linux 2. Occasionally, a simu-lation gets stuck and requires a cloud operations engineer to solve the problem by connecting to an EC2 instance through SSH.

Company policy states that no EC2 instance can use the same SSH key and that all connections must be logged in AWS CloudTrail.

How can a solutions architect meet these requirements?

A.

Launch new EC2 instances, and generate an individual SSH key for each instance. Store the SSH key in AWS Secrets Manager. Create a new IAM policy, and attach it tothe engineers' IAM role with an Allow statement for the GetSecretValue action. Instruct the engineers to fetch the SSH key from Secrets Manager when they connect through any SSH client.

B.

Create an AWS Systems Manager document to run commands on EC2 instances to set a new unique SSH key. Create a new IAM policy, and attach it to the engineers' IAM role with an Allow statement to run Systems Manager documents. Instruct the engineers to run the document to set an SSH key and to connect through any SSH client.

C.

Launch new EC2 instances without setting up any SSH key for the instances. Set up EC2 Instance Connect on each instance. Create a new IAM policy, and attach it to the engineers' IAM role with an Allow statement for the SendSSHPublicKey action. Instruct the engineers to connect to the instance by using a browser-based SSH client from the EC2 console.

D.

Set up AWS Secrets Manager to store the EC2 SSH key. Create a new AWS Lambda function to create a new SSH key and to call AWS Systems Manager Session Manager to set the SSH key on the EC2 instance. Configure Secrets Manager to use the Lambda function for automatic rotation once daily. Instruct the engineers to fetch the SSH key from Secrets Manager when they connect through any SSH client.

A company is using AWS Organizations to manage multiple accounts Due to regulatory requirements, the company wants to restrict specific member accounts to certain AWS Regions, where they are permitted to deploy resources The resources in the accounts must be tagged enforced based on a group standard and centrally managed with minimal configuration.

What should a solutions architect do to meet these requirements'?

A.

Create an AWS Config rule in the specific member accounts to limit Regions and apply a tag policy.

B.

From the AWS Billing and Cost Management console in the management account, disable Regions for the specific member accounts and apply a tag policy on the root.

C.

Associate the specific member accounts with the root Apply a tag policy and an SCP using conditions to limit Regions.

D.

Associate the specific member accounts with a new OU. Apply a tag policy and an SCP using conditions to limit Regions.

A company stores application data in many Amazon S3 buckets in one AWS account. Some of the S3 buckets contain sensitive data. The company does not have data inventory for the S3 buckets. The company uses server-side encryption with Amazon S3 managed keys (SSE-S3) to encrypt all data in the S3 buckets.

A solutions architect must design a solution to encrypt sensitive data with a key that only administrators can access.

Which solution will meet these requirements?

A.

Use Amazon Inspector to determine which S3 buckets contain sensitive data. Create a new AWS KMS customer managed key and a key policy that provides access to administrators only. Set default S3 bucket encryption to use the new KMS key (SSE-KMS). Update the S3 bucket policy to add a Deny effect and a Condition element of "StringNotEquals": { "s3:x-amz-server-side-encryption": "aws:kms" }.

B.

Use Amazon Inspector to determine which S3 buckets contain sensitive data. Update the key policy on the AWS managed key to provide access to administrators only. Use AWS Batch to encrypt all existing objects that include sensitive data in the S3 buckets with the updated AWS managed key.

C.

Use Amazon Made to determine which S3 buckets contain sensitive data. Create a new AWS KMS customer managed key and a key policy that provides access to administrators only. Set default S3 bucket encryption to use the new KMS key (SSE-KMS). Create an AWS Step Functionsworkflow to encrypt all existing S3 objects that include sensitive data by using the new KMS key.

D.

Use Amazon Made to determine which S3 buckets contain sensitive data. Update the key policy on the AWS managed key to provide access to administrators only. Update the S3 bucket policy to add a Deny effect and a Condition element of "StringNotEquals": { "s3:x-amz-server-side-encryption": "aws:kms" }.

A company needs to use an AWS Transfer Family SFTP-enabled server with an Amazon S3 bucket to receive updates from a third-party data supplier. The data is encrypted with Pretty Good Privacy (PGP) encryption The company needs a solution that will automatically decrypt the data after the company receives the data

A solutions architect will use a Transfer Family managed workflow The company has created an 1AM service role by using an 1AM policy that allows access to AWS Secrets Manager and the S3 bucket The role's trust relationship allows the transfer amazonaws com service to assume the rote

What should the solutions architect do next to complete the solution for automatic decryption'?

A.

Store the PGP public key in Secrets Manager Add a nominal step in the Transfer Family managed workflow to decrypt files Configure PGP encryption parameters in the nominal step Associate the workflow with the Transfer Family server

B.

Store the PGP private key in Secrets Manager Add an exception-handling step in the Transfer Family managed workflow to decrypt files Configure PGP encryption parameters in the exception handler Associate the workflow with the SFTP user

C.

Store the PGP private key in Secrets Manager Add a nominal step in the Transfer Family managed workflow to decrypt files. Configure PGP decryption parameters in the nominal step Associate the workflow with the Transfer Family server

D.

Store the PGP public key in Secrets Manager Add an exception-handling step in the TransferFamily managed workflow to decrypt files Configure PGP decryption parameters in the exception handler Associate the workflow with the SFTP user

A financial services company has an asset management product that thousands of customers use around the world. The customers provide feedback about the product

through surveys. The company is building a new analytical solution that runs on Amazon EMR to analyze the data from these surveys. The following user personas need to access the analytical solution to perform different actions:

• Administrator: Provisions the EMR cluster for the analytics team based on the team's requirements

• Data engineer: Runs E TL scripts to process, transform, and enrich the datasets

• Data analyst: Runs SQL and Hive queries on the data

A solutions architect must ensure that all the user personas have least privilege access to only the resources that they need. The user personas must be able to launch only applications that are approved and authorized. The solution also must ensure tagging for all resources that the user personas create.

Which solution will meet these requirements?

A.

Create IAM roles for each user persona. Attach identity-based policies to define which actions the user who assumes the role can perform. Create an AWSConfig rule to check for noncompliant resources. Configure the rule to notify the administrator to remediate the noncompliant resources.

B.

Set up Kerberos-based authentication for EMR clusters upon launch. Specify a Kerberos security configuration along with cluster-specific Kerberos options.

C.

Use AWS Service Catalog to control the Amazon EMR versions available for deployment, the cluster configuration, and the permissions for each user persona.

D.

Launch the EMR cluster by using AWS CloudFormation. Attach resource-based policies to the EMR cluster during cluster creation. Create an AWS Config rule to check for noncompliant clusters and noncompliant Amazon S3 buckets. Configure the rule to notify the administrator to remediate the noncompliant resources.

A company wants to change its internal cloud billing strategy for each of its business units. Currently, the cloud governance team shares reports for overall cloud spending with the head of each business unit. The company uses AWS Organizations lo manage the separate AWS accounts for each business unit. The existing tagging standard in Organizations includes the application, environment, and owner. The cloud governance team wants a centralized solution so each business unit receives monthly reports on its cloud spending. The solution should also send notifications for any cloud spending that exceeds a set threshold.

Which solution is the MOST cost-effective way to meet these requirements?

A.

Configure AWS Budgets in each account and configure budget alerts that are grouped by application, environment, and owner. Add each business unit to an Amazon SNS topic for each alert. Use Cost Explorer in each account to create monthly reports for each business unit.

B.

Configure AWS Budgets in the organization's master account and configure budget alerts that are grouped by application, environment, and owner. Add each business unit to an Amazon SNS topic for each alert. Use Cost Explorer in the organization's master account to create monthly reports for each business unit.

C.

Configure AWS Budgets in each account and configure budget alerts lhat are grouped by application, environment, and owner. Add each business unit to an Amazon SNS topic for each alert. Use the AWS Billing and Cost Management dashboard in each account to create monthly reports for each business unit.

D.

Enable AWS Cost and Usage Reports in the organization's master account and configure reports grouped by application, environment, and owner. Create an AWS Lambda function that processes AWS Cost and Usage Reports, sends budget alerts, and sends monthly reports to each business unit's email list.

A company is implementing a serverless architecture by using AWS Lambda functions that need to access a Microsoft SQL Server DB instance on Amazon RDS. The company has separate environments for development and production, including a clone of the database system.

The company's developers are allowed to access the credentials for the development database. However, the credentials for the production database must be encrypted with a key that only members of the IT security team's IAM user group can access. This key must be rotated on a regular basis.

What should a solutions architect do in the production environment to meet these requirements?

A.

Store the database credentials in AWS Systems Manager Parameter Store by using a SecureString parameter that is encrypted by an AWS Key Management Service (AWS KMS) customer managed key. Attach a role to each Lambda function to provide access to the SecureString parameter. Restrict access to the Securestring parameter and the customer managed key so that only the IT security team can access the parameter and the key.

B.

Encrypt the database credentials by using the AWS Key Management Service (AWS KMS) default Lambda key. Store the credentials in the environment variables of each Lambda function. Load the credentials from the environment variables in the Lambda code. Restrict access to the KMS key o that only the IT security team can access the key.

C.

Store the database credentials in the environment variables of each Lambda function.Encrypt the environment variables by using an AWS Key Management Service (AWS KMS) customer managed key. Restrict access to the customer managed key so that only the IT security team can access the key.

D.

Store the database credentials in AWS Secrets Manager as a secret that is associated with an AWS Key Management Service (AWS KMS) customermanaged key. Attach a role to each Lambda function to provide access to the secret. Restrict access to the secret and the customer managed key so that only the IT security team can access the secret and the key.

A company uses a software package for surveys. During surveys, data is uploaded from a field operator's device to an Amazon S3 bucket. A custom application that runs on several Amazon EC2 instances polls the S3 bucket for new data. When new data is available, the software processes the data.

The data uploads are infrequent. The processing software can take up to 25 minutes to analyze each data upload. The company wants to optimize the application workflow to process the S3 data.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Modify the application to accept new S3 object keys as inputs. Containerize the application. Deploy the container to an Amazon ECS cluster that uses the AWS Fargate launch type. Configure S3 bucket notifications to send events to Amazon EventBridge when new objects are uploaded. Create an EventBridge rule that invokes an ECS task to run the application when a new S3 object event occurs.

B.

Modify the application to accept new S3 object keys as inputs. Containerize the application. Deploy the container image to AWS Lambda functions. Create a new AWS Step Functions state machine to invoke the Lambda functions. Configure the state machine with a Task state that calls the Lambda functions. Set the Task state's Timeout property to 30 minutes.

C.

Modify the application to accept new S3 object keys as inputs. Move the application from EC2 instances to Amazon ECS by using the EC2 capacity provider. Create an AWS Glue crawler to check the S3 bucket and invoke the application. Configure the application to process the data when the data is uploaded to Amazon S3.

D.

Modify the application to use HTTP to poll new S3 object keys that reference data to process. Containerize the application. Deploy the container image to AWS Lambda functions. Configure S3 bucket notifications to send events to Amazon EventBridge when new objects are uploaded. Create an EventBridge rule that invokes the Lambda functions to post the new objects to HTTP endpoints by using fan-out.

A company migrated to AWS and uses AWS Business Support. The company wants to monitor thecost-effectiveness of Amazon EC2 instances. The EC2 instances have tags for department, business unit, and environment. Development EC2 instances have high cost but low utilization.

The company needs to detect and stop any underutilized development EC2 instances. Instances are underutilized if they had 10% or less average CPU utilization and 5 MB or less network I/O for at least 4 of the past 14 days.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Configure Amazon CloudWatch dashboards to monitor EC2 instance utilization based on tags for department, business unit, and environment. Create an Amazon EventBridge rule that invokes an AWS Lambda function to stop underutilized development EC2 instances.

B.

Configure AWS Systems Manager to track EC2 instance utilization and report underutilized instances to Amazon CloudWatch. Filter the CloudWatch data by tags for department, business unit, and environment. Create an Amazon EventBridge rule that invokes an AWS Lambda function to stop underutilized EC2 instances.

C.

Create an Amazon EventBridge rule to detect low utilization of EC2 instances reported by AWS Trusted Advisor. Configure the rule to invoke a Lambda function that filters the data by tags for department, business unit, and environment and stops underutilized development EC2 instances.

D.

Create an AWS Lambda function to run daily to retrieve utilization data for all EC2 instances. Save the data to an Amazon DynamoDB table. Create a QuickSight dashboard that uses the DynamoDB table as a data source to identify and stop underutilized development EC2 instances.

A company’s web application uses an Amazon API Gateway API, AWS Lambda functions, and Amazon DynamoDB global tables to handle backend requests. The web application is deployed in two AWS Regions in an active-passive model. The company uses Amazon Route 53 for DNS. The web application requires a manual DNS update to fail over to the secondary Region. An analytics Lambda function runs in the same AWS account. The function has caused Lambda concurrency to reach 90% of the current quota on an average day. A recent surge in traffic for the analytics workload resulted in throttled Lambda requests and a poor user experience for the web application users. A solutions architect must increase the reliability of the web application. The solution must use an Amazon CloudWatch alarm to send an Amazon SNS notification when the Lambda concurrency reaches a specific utilization threshold. Which solution will meet these requirements with the LEAST operational overhead?

A.

Set reserved concurrency on the web application Lambda functions. Implement Route 53 health checks and failover records to route traffic to the secondary Region. Configure the CloudWatch alarm to use the AWS Trusted Advisor ServiceLimitUsage metric and to send the SNS notification.

B.

Set reserved concurrency on the web application Lambda functions. Implement Route 53 health checks and latency records to route traffic to the secondary Region. Configure the CloudWatch alarm to use the AWS Trusted Advisor ServiceLimitUsage metric and to send an SNS notification.

C.

Set provisioned concurrency on the web application Lambda functions. Implement Route 53 health checks and failover records to route traffic to the secondary Region. Configure the CloudWatch alarm to use the Lambda ConcurrentExecutions metric and to send an SNS notification.

D.

Set provisioned concurrency on the web application Lambda functions. Implement Route 53 health checks and geolocation records to route traffic to the secondary Region. Configure the CloudWatch alarm to use the Lambda ProvisionedConcurrencyInvocations metric and to send an SNS notification.

A solutions architect must create a business case for migration of a company's on-premises data center to the AWS Cloud. The solutions architect will use a configuration management database (CMDB) export of all the company's servers to create the case.

Which solution will meet these requirements MOST cost-effectively?

A.

Use AWS Well-Architected Tool to import the CMDB data to perform an analysis and generate recommendations.

B.

Use Migration Evaluator to perform an analysis. Use the data import template to upload the data from the CMDB export.

C.

Implement resource matching rules. Use the CMDB export and the AWS Price List Bulk API to query CMDB data against AWS services in bulk.

D.

Use AWS Application Discovery Service to import the CMDB data to perform an analysis.

A company hosts a software as a service (SaaS) solution on AWS. The solution has an Amazon API Gateway API that serves an HTTPS endpoint. The API uses AWS Lambda functions for compute. The Lambda functions store data in an Amazon Aurora Serverless VI database.

The company used the AWS Serverless Application Model (AWS SAM) to deploy the solution. The solution extends across multiple Availability Zones and has nodisaster recovery (DR) plan.

A solutions architect must design a DR strategy that can recover the solution in another AWS Region. The solution has an R TO of 5 minutes and an RPO of 1 minute.

What should the solutions architect do to meet these requirements?

A.

Create a read replica of the Aurora Serverless VI database in the target Region. Use AWS SAM to create a runbook to deploy the solution to the target Region. Promote the read replica to primary in case of disaster.

B.

Change the Aurora Serverless VI database to a standard Aurora MySQL global database that extends across the source Region and the target Region. Use AWS SAM to create a runbook to deploy the solution to the target Region.

C.

Create an Aurora Serverless VI DB cluster that has multiple writer instances in the target Region. Launch the solution in the target Region. Configure the two Regional solutions to work in an active-passive configuration.

D.

Change the Aurora Serverless VI database to a standard Aurora MySQL global database that extends across the source Region and the target Region. Launch the solution in the target Region. Configure the two Regional solutions to work in an active-passive configuration.

A software as a service (SaaS) company provides a media software solution to customers The solution is hosted on 50 VPCs across various AWS Regions and AWS accounts One of the VPCs is designated as a management VPC The compute resources in the VPCs work independently

The company has developed a new feature that requires all 50 VPCs to be able to communicate with each other. The new feature also requires one-way access from each customer's VPC to the company's management VPC The management VPC hosts a compute resource that validates licenses for the media software solution

The number of VPCs that the company will use to host the solution will continue to increase as the solution grows

Which combination of steps will provide the required VPC connectivity with the LEAST operational overhead'' (Select TWO.)

A.

Create a transit gateway Attach all the company's VPCs and relevant subnets to the transit gateway

B.

Create VPC peering connections between all the company's VPCs

C.

Create a Network Load Balancer (NLB) that points to the compute resource for license validation. Create an AWS PrivateLink endpoint service that is available to each customer's VPC Associate the endpoint service with the NLB

D.

Create a VPN appliance in each customer's VPC Connect the company's management VPC to each customer's VPC by using AWS Site-to-Site VPN

E.

Create a VPC peering connection between the company's management VPC and each customer'sVPC

Page: 5 / 6
Total 562 questions
Copyright © 2014-2025 Solution2Pass. All Rights Reserved