Weekend Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmaspas7

Easiest Solution 2 Pass Your Certification Exams

SAP-C02 Amazon Web Services AWS Certified Solutions Architect - Professional Free Practice Exam Questions (2025 Updated)

Prepare effectively for your Amazon Web Services SAP-C02 AWS Certified Solutions Architect - Professional certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2025, ensuring you have the most current resources to build confidence and succeed on your first attempt.

Page: 1 / 6
Total 562 questions

An adventure company has launched a new feature on its mobile app. Users can use the feature to upload their hiking and ratting photos and videos anytime. The photos and videos are stored in Amazon S3 Standard storage in an S3 bucket and are served through Amazon CloudFront.

The company needs to optimize the cost of the storage. A solutions architect discovers that most of the uploaded photos and videos are accessed infrequently after 30 days. However, some of the uploaded photos and videos are accessed frequently after 30 days. The solutions architect needs to implement a solution that maintains millisecond retrieval availability of the photos and videos at the lowest possible cost.

Which solution will meet these requirements?

A.

Configure S3 Intelligent-Tiering on the S3 bucket.

B.

Configure an S3 Lifecycle policy to transition image objects and video objects from S3 Standard to S3 Glacier Deep Archive after 30 days.

C.

Replace Amazon S3 with an Amazon Elastic File System (Amazon EFS) file system that is mounted on Amazon EC2 instances.

D.

Add a Cache-Control: max-age header to the S3 image objects and S3 video objects. Set the header to 30 days.

A company is processing videos in the AWS Cloud by using Amazon EC2 instances in an Auto Scaling group. It takes 30 minutes to process a video. Several EC2 instances scale in and out depending on the number of videos in an Amazon Simple Queue Service (Amazon SQS) queue.

The company has configured the SQS queue with a redrive policy that specifies a target dead-letter queue and a maxReceiveCount of 1. The company has set the visibility timeout for the SQS queue to 1 hour. The company has set up an Amazon CloudWatch alarm to notify the development team when there are messages in the dead-letter queue.

Several times during the day, the development team receives notification that messages are in the dead-letter queue and that videos have not been processed properly. An investigation finds no errors in the application logs.

How can the company solve this problem?

A.

Turn on termination protection for the EC2 instances.

B.

Update the visibility timeout for the SOS queue to 3 hours.

C.

Configure scale-in protection for the instances during processing.

D.

Update the redrive policy and set maxReceiveCount to 0.

A company is designing an AWS Organizations structure. The company wants to standardize a process to apply tags across the entire organization. The company will require tags with specific values when a user creates a new resource. Each of the company's OUs will have unique tag values.

Which solution will meet these requirements?

A.

Use an SCP to deny the creation of resources that do not have the required tags. Create a tag policy that Includes the tag values that the company has assigned to each OU. Attach the tag policies to the OUs.

B.

Use an SCP to deny the creation of resources that do not have the required tags. Create a tag policy that includes the tag values that the company has assigned to each OU. Attach the tag policies to the organization's management account.

C.

Use an SCP to allow the creation of resources only when the resources have the required tags. Create a tag policy that includes the tag values that the company has assigned to each OU. Attach the tag policies to the OUs.

D.

Use an SCP to deny the creation of resources that do not have the required tags. Define the list of tags. Attach the SCP to the OUs

A video processing company has an application that downloads images from an Amazon S3 bucket, processes the images, stores a transformed image in a second S3 bucket, and updates metadata about the image in an Amazon DynamoDB table. The application is written in Node.js and runs by using an AWS Lambda function. The Lambda function is invoked when a new image is uploaded to Amazon S3.

The application ran without incident for a while. However, the size of the images has grown significantly. The Lambda function is now failing frequently with timeout errors. The function timeout is set to its maximum value. A solutions architect needs to refactor the application’s architecture to prevent invocation failures. The company does not want to manage the underlying infrastructure.

Which combination of steps should the solutions architect take to meet these requirements? (Choose two.)

A.

Modify the application deployment by building a Docker image that contains the application code. Publish the image to Amazon Elastic Container Registry (Amazon ECR).

B.

Create a new Amazon Elastic Container Service (Amazon ECS) task definition with a compatibility type of AWS Fargate. Configure the task definition to use the new image in Amazon Elastic Container Registry (Amazon ECR). Adjust the Lambda function to invoke an ECS task by using the ECS task definition when a new file arrives in Amazon S3.

C.

Create an AWS Step Functions state machine with a Parallel state to invoke the Lambda function. Increase the provisioned concurrency of the Lambda function.

D.

Create a new Amazon Elastic Container Service (Amazon ECS) task definition with a compatibility type of Amazon EC2. Configure the task definition to use the new image in Amazon Elastic Container Registry (Amazon ECR). Adjust the Lambda function to invoke an ECS task by using the ECS task definition when a new file arrives in Amazon S3.

E.

Modify the application to store images on Amazon Elastic File System (Amazon EFS) and to store metadata on an Amazon RDS DB instance. Adjust the Lambda function to mount the EFS file share.

An education company is running a web application used by college students around the world. The application runs in an Amazon Elastic Container Service (Amazon ECS) cluster in an Auto Scaling group behind an Application Load Balancer (ALB). A system administrator detected a weekly spike in the number of failed logic attempts. Which overwhelm the application’s authentication service. All the failed login attempts originate from about 500 different IP addresses that change each week. A solutions architect must prevent the failed login attempts from overwhelming the authentication service.

Which solution meets these requirements with the MOST operational efficiency?

A.

Use AWS Firewall Manager to create a security group and security group policy to deny access from the IP addresses.

B.

Create an AWS WAF web ACL with a rate-based rule, and set the rule action to Block. Connect the web ACL to the ALB.

C.

Use AWS Firewall Manager to create a security group and security group policy to allow access only to specific CIDR ranges.

D.

Create an AWS WAF web ACL with an IP set match rule, and set the rule action to Block. Connect the web ACL to the ALB.

An online retail company is migrating its legacy on-premises .NET application to AWS. The application runs on load-balanced frontend web servers, load-balanced application servers, and a Microsoft SQL Server database.

The company wants to use AWS managed services where possible and does not want to rewrite the application. A solutions architect needs to implement a solution to resolve scaling issues and minimize licensing costs as the application scales.

Which solution will meet these requirements MOST cost-effectively?

A.

Deploy Amazon EC2 instances in an Auto Scaling group behind an Application Load Balancerfor the web tier and for the application tier. Use Amazon Aurora PostgreSQL with Babelfish turned on to replatform the SOL Server database.

B.

Create images of all the servers by using AWS Database Migration Service (AWS DMS). Deploy Amazon EC2 instances that are based on the on-premises imports. Deploy the instances in an Auto Scaling group behind a Network Load Balancer for the web tier and for the application tier. Use Amazon DynamoDB as the database tier.

C.

Containerize the web frontend tier and the application tier. Provision an Amazon Elastic Kubernetes Service (Amazon EKS) cluster. Create an Auto Scaling group behind a Network Load Balancer for the web tier and for the application tier. Use Amazon RDS for SOL Server to host the database.

D.

Separate the application functions into AWS Lambda functions. Use Amazon API Gateway for the web frontend tier and the application tier. Migrate the data to Amazon S3. Use Amazon Athena to query the data.

An online gaming company needs to optimize the cost of its workloads on AWS. The company uses a dedicated account to host the production environment for its online gaming application and an analytics application.

Amazon EC2 instances host the gaming application and must always be vailable. The EC2 instances run all year. The analytics application uses data that is stored in Amazon S3. The analytics application can be interrupted and resumed without issue.

Which solution will meet these requirements MOST cost-effectively?

A.

Purchase an EC2 Instance Savings Plan for the online gaming application instances. Use On-Demand Instances for the analytics application.

B.

Purchase an EC2 Instance Savings Plan for the online gaming application instances. Use Spot Instances for the analytics application.

C.

Use Spot Instances for the online gaming application and the analytics application. Set up a catalog in AWS Service Catalog to provision services at a discount.

D.

Use On-Demand Instances for the online gaming application. Use Spot Instances for the analytics application. Set up a catalog in AWS Service Catalog to provision services at a discount.

A company is designing a new website that hosts static content. The website will give users the ability to upload and download large files. According to company requirements, all data must be encrypted in transit and at rest. A solutions architect is building the solution by using Amazon S3 and Amazon CloudFront.

Which combination of steps will meet the encryption requirements? (Select THREE.)

A.

Turn on S3 server-side encryption for the S3 bucket that the web application uses.

B.

Add a policy attribute of "aws:SecureTransport": "true" for read and write operations in the S3 ACLs.

C.

Create a bucket policy that denies any unencrypted operations in the S3 bucket that the web application uses.

D.

Configure encryption at rest on CloudFront by using server-side encryption with AWS KMS keys (SSE-KMS).

E.

Configure redirection of HTTP requests to HTTPS requests in CloudFront.

F.

Use the RequireSSL option in the creation of presigned URLs for the S3 bucket that the web application uses.

A company ingests and processes streaming market data. The data rate is constant. A nightly process that calculates aggregate statistics is run, and each execution takes about 4 hours to complete. The statistical analysis is not mission critical to the business, and previous data points are picked up on the next execution if a particular run fails.

The current architecture uses a pool of Amazon EC2 Reserved Instances with 1-year reservations running full time to ingest and store the streaming data in attached Amazon EBS volumes. On-Demand EC2 instances are launched each night to perform the nightly processing, accessing the stored data from NFS shares on the ingestion servers, and terminating the nightly processing servers when complete. The Reserved Instance reservations are expiring, and the company needs to determine whether to purchase new reservations or implement a new design.

Which is the most cost-effective design?

A.

Update the ingestion process to use Amazon Kinesis Data Firehose to save data to Amazon S3. Use a scheduled script to launch a fleet of EC2 On-Demand Instances each night to perform the batch processing of the S3 data. Configure the script to terminate the instances when the processing is complete.

B.

Update the ingestion process to use Amazon Kinesis Data Firehose to save data to Amazon S3. Use AWS Batch with Spot Instances to perform nightlyprocessing with a maximum Spot price that is 50% of the On-Demand price.

C.

Update the ingestion process to use a fleet of EC2 Reserved Instances with 3-year reservations behind a Network Load Balancer. Use AWS Batch with SpotInstances to perform nightly processing with a maximum Spot price that is 50% of the On-Demand price.

D.

Update the ingestion process to use Amazon Kinesis Data Firehose to save data to Amazon Redshift. Use Amazon EventBridge to schedule an AWS Lambdafunction to run nightly to query Amazon Redshift to generate the daily statistics.

A solutions architect is determining the DNS strategy for an existing VPC. The VPC is provisioned to use the 10.24.34.0/24 CIDR block. The VPC also uses Amazon Route 53 Resolver for DNS. New requirements mandate that DNS queries must use private hosted zones. Additionally, instances that have public IP addresses must receive corresponding public hostnames.

Which solution will meet these requirements to ensure that the domain names are correctly resolved within the VPC?

A.

Create a private hosted zone. Activate the enableDnsSupport attribute and the enableDnsHostnames attribute for the VPC. Update the VPC DHCP options set to include domain-name-servers-10.24.34.2.

B.

Create a private hosted zone. Associate the private hosted zone with the VPC. Activate the enableDnsSupport attribute and the enableDnsHostnames attribute for the VPC. Create a new VPC DHCP options set, and configure domain-name-servers=AmazonProvidedDNS. Associate the new DHCP options set with the VPC.

C.

Deactivate the enableDnsSupport attribute for the VPC. Activate the enableDnsHostnames attribute for the VPC. Create a new VPC DHCP options set, and configure domain-name-servers=10.24.34.2. Associate the new DHCP options set with the VPC.

D.

Create a private hosted zone. Associate the private hosted zone with the VPC. Activate the enableDnsSupport attribute for the VPC. Deactivate the enableDnsHostnames attribute for the VPC. Update the VPC DHCP options set to include domain-name-servers=AmazonProvidedDNS.

A company needs to establish a connection from its on-premises data center to AWS. The company needs to connect all of its VPCs that are located in different AWS Regions with transitive routing capabilities between VPC networks. The company also must reduce network outbound traffic costs, increase bandwidth throughput, and provide a consistent network experience for end users.

Which solution will meet these requirements?

A.

Create an AWS Site-to-Site VPN connection between the on-premises data center and a new central VPC. Create VPC peering connections that initiate from the central VPC to all other VPCs.

B.

Create an AWS Direct Connect connection between the on-premises data center and AWS. Provision a transit VIF, and connect it to a Direct Connect gateway. Connect the Direct Connect gateway to all the other VPCs by using a transit gateway in each Region.

C.

Create an AWS Site-to-Site VPN connection between the on-premises data centerand a new central VPC. Use a transit gateway with dynamic routing. Connect the transit gateway to all other VPCs.

D.

Create an AWS Direct Connect connection between the on-premises data center and AWS Establish an AWS Site-to-Site VPN connection between all VPCs in each Region. Create VPC peering connections that initiate from the central VPC to all other VPCs.

A company has purchased appliances from different vendors. The appliances all have loT sensors. The sensors send status information in the vendors' proprietary formats to a legacy application that parses the information into JSON. The parsing is simple, but each vendor has a unique format. Once daily, the application parses all the JSON records and stores the records in a relational database for analysis.

The company needs to design a new data analysis solution that can deliver faster and optimize costs.

Which solution will meet these requirements?

A.

Connect the loT sensors to AWS loT Core. Set a rule to invoke an AWS Lambda function to parse the information and save a .csv file to Amazon S3. Use AWS Glue to catalog the files. Use Amazon Athena and Amazon OuickSight for analysis.

B.

Migrate the application server to AWS Fargate, which will receive the information from loT sensors and parse the information into a relational format. Save the parsed information to Amazon Redshift for analysis.

C.

Create an AWS Transfer for SFTP server. Update the loT sensor code to send the information as a .csv file through SFTP to the server. Use AWS Glue to catalog the files. Use Amazon Athena for analysis.

D.

Use AWS Snowball Edge to collect data from the loT sensors directly to perform local analysis. Periodically collect the data into Amazon Redshift to perform global analysis.

A company has a web application that uses Amazon API Gateway. AWS Lambda and Amazon DynamoDB A recent marketing campaign has increased demand Monitoring software reports that many requests have significantly longer response times than before the marketing campaign

A solutions architect enabled Amazon CloudWatch Logs for API Gateway and noticed that errors are occurring on 20% of the requests. In CloudWatch. the Lambda function. Throttles metric represents 1% of the requests and the Errors metric represents 10% of the requests Application logs indicate that, when errors occur there is a call to DynamoDB

What change should the solutions architect make to improve the current response times as the web application becomes more popular'?

A.

Increase the concurrency limit of the Lambda function

B.

Implement DynamoDB auto scaling on the table

C.

Increase the API Gateway throttle limit

D.

Re-create the DynamoDB table with a better-partitioned primary index.

A company is migrating a legacy application from an on-premises data center to AWS. The application uses MongoDB as a key-value database According to the company's technical guidelines, all Amazon EC2 instances must be hosted in a private subnet without an internet connection. In addition, all connectivity between applications and databases must be encrypted. The database must be able to scale based on demand.

Which solution will meet these requirements?

A.

Create new Amazon DocumentDB (with MongoDB compatibility) tables for the application with Provisioned IOPS volumes. Use the instance endpoint to connect to Amazon DocumentDB.

B.

Create new Amazon DynamoDB tables for the application with on-demand capacity. Use a gateway VPC endpoint for DynamoDB to connect to the DynamoDB tables

C.

Create new Amazon DynamoDB tables for the application with on-demand capacity. Use an interface VPC endpoint for DynamoDB to connect to the DynamoDB tables.

D.

Create new Amazon DocumentDB (with MongoDB compatibility) tables for the application with Provisioned IOPS volumes Use the cluster endpoint to connect to Amazon DocumentDB

A company needs to migrate its on-premises database fleet to Amazon RDS. The company is currently using a mixture of Microsoft SQL Server, and Oracle databases. Some of the databases have custom schemas and stored procedures.

Which combination of steps should the company take for the migration? (Select TWO.)

A.

Use Migration Evaluator Quick Insights to analyze the source databases and to identify the stored procedures that need to be migrated.

B.

Use AWS Application Migration Service to analyze the source databases and to identify the stored procedures that need to be migrated.

C.

Use AWS SCT to analyze the source databases for changes that are required.

D.

Use AWS DM5 to migrate the source databases to Amazon RD5.

E.

Use AWS DataSync to migrate the data from the source databases to Amazon RDS.

A company has automated the nightly retraining of its machine learning models by using AWS Step Functions. The workflow consists of multiple steps that use AWS Lambda Each step can fail for various reasons and any failure causes a failure of the overall workflow

A review reveals that the retraining has failed multiple nights in a row without the company noticing the failure A solutions architect needs to improve the workflow so that notifications are sent for all types of failures in the retraining process

Which combination of steps should the solutions architect take to meet these requirements? (Select THREE)

A.

Create an Amazon Simple Notification Service (Amazon SNS) topic with a subscription of type "Email" that targets the team's mailing list.

B.

Create a task named "Email" that forwards the input arguments to the SNS topic

C.

Add a Catch field all Task Map. and Parallel states that have a statement of "Error Equals": [ “States. ALL”] and "Next": "Email".

D.

Add a new email address to Amazon Simple Email Service (Amazon SES). Verify the email address.

E.

Create a task named "Email" that forwards the input arguments to the SES email address

F.

Add a Catch field to all Task Map, and Parallel states that have a statement of "Error Equals": [ "states. Runtime”] and "Next": "Email".

A company uses a service to collect metadata from applications that the company hosts on premises. Consumer devices such as TVs and internet radios access the applications. Many older devices do not support certain HTTP headers and exhibit errors when these headers are present in responses. The company has configured an on-premises load balancer to remove the unsupported headers from responses sent to older devices, which the company identified by the User-Agent headers.

The company wants to migrate the service to AWS, adopt serverless technologies, and retain the ability to support the older devices. The company has already migrated the applications into a set of AWS Lambda functions.

Which solution will meet these requirements?

A.

Create an Amazon CloudFront distribution for the metadata service. Create an Application Load Balancer (ALB). Configure the CloudFront distribution to forward requests to the ALB. Configure the ALB to invoke the correct Lambda function for each type of request. Create a CloudFront function to remove the problematic headers based on the value of the User-Agent header.

B.

Create an Amazon API Gateway REST API for the metadata service. Configure API Gateway to invoke the correct Lambda function for each type of request. Modify the default gateway responses to remove the problematic headers based on the value of the User-Agent header.

C.

Create an Amazon API Gateway HTTP API for the metadata service. Configure API Gateway to invoke the correct Lambda function for each type of request. Create a response mapping template to remove the problematic headers based on the value of the User-Agent. Associate the response data mapping with the HTTP API.

D.

Create an Amazon CloudFront distribution for the metadata service. Create an Application Load Balancer (ALB). Configure the CloudFront distribution to forward requests to the ALB. Configure the ALB to invoke the correct Lambda function for each type of request. Create a Lambda@Edge function that will remove the problematic headers in response to viewer requests based on the value of the User-Agent header.

A company runs a highly available data collection application on Amazon EC2 in the eu-north-1 Region. The application collects data from end-user devices and writes records to an Amazon Kinesis data stream and a set of AWS Lambda functions that process the records. The company persists the output of the record processing to an Amazon S3 bucket in eu-north-1. The company uses the data in the S3 bucket as a data source for Amazon Athena.

The company wants to increase its global presence. A solutions architect must launch the data collection capabilities in the sa-east-1 and ap-northeast-1 Regions. The solutions architect deploys the application, the Kinesis data stream, and the Lambda functions in the two new Regions. The solutions architect keeps the S3 bucket in eu-north-1 to meet a requirement to centralize the data analysis.

During testing of the new setup, the solutions architect notices a significant lag on the arrival of data from the new Regions to the S3 bucket.

Which solution will improve this lag time the MOST?

A.

In each of the two new Regions, set up the Lambda functions to run in a VPC. Set up an S3 gateway endpoint in that VPC.

B.

Turn on S3 Transfer Acceleration on the S3 bucket in eu-north-1. Change the application to use the new S3 accelerated endpoint when the application uploads data to the S3 bucket.

C.

Create an S3 bucket in each of the two new Regions. Set the application in each new Region to upload to its respective S3 bucket. Set up S3 Cross-Region Replication to replicate data to the S3 bucket in eu-north-1.

D.

Increase the memory requirements of the Lambda functions to ensure that they have multiple cores available. Use the multipart upload feature when the application uploads data to Amazon S3 from Lambda.

A company is running a data-intensive application on AWS. The application runs on a cluster of hundreds of Amazon EC2 instances. A shared file system also runs on several EC2 instances that store 200 TB of data. The application reads and modifies the data on the shared file system and generates a report. The job runs once monthly, reads a subset of the files from the shared file system, and takes about 72 hours to complete. The compute instances scale in an Auto Scaling group, but the instances that host the shared file system run continuously. The compute and storage instances are all in the same AWS Region.

A solutions architect needs to reduce costs by replacing the shared file system instances. The file system must provide high performance access to the needed data for the duration of the 72-hour run.

Which solution will provide the LARGEST overall cost reduction while meeting these requirements?

A.

Migrate the data from the existing shared file system to an Amazon S3 bucket that uses the S3 Intelligent-Tiering storage class. Before the job runs each month, use Amazon FSx for Lustre to create a new file system with the data from Amazon S3 by using lazy loading. Use the new file system as the shared storage for the duration of the job. Delete the file system when the job is complete.

B.

Migrate the data from the existing shared file system to a large Amazon Elastic Block Store (Amazon EBS) volume with Multi-Attach enabled. Attach the EBS volume to each of the instances by using a user data script in the Auto Scaling group launch template. Use the EBS volume as the shared storage for the duration of the job. Detach the EBS volume when the job is complete.

C.

Migrate the data from the existing shared file system to an Amazon S3 bucket that uses the S3 Standard storage class. Before the job runs each month, use Amazon FSx for Lustre to create a new file system with the data from Amazon S3 by using batch loading. Use the new file system as the shared storage for the duration of the job. Delete the file system when the job is complete.

D.

Migrate the data from the existing shared file system to an Amazon S3 bucket. Before the job runs each month, use AWS Storage Gateway to create a file gateway with the data from Amazon S3. Use the file gateway as the shared storage for the job. Delete the file gateway when the job is complete.

A company hosts an intranet web application on Amazon EC2 instances behind an Application Load Balancer (ALB). Currently, users authenticate to the application against an internal user database.

The company needs to authenticate users to the application by using an existing AWS Directory Service for Microsoft Active Directory directory. All users with accounts in the directory must have access to the application.

Which solution will meet these requirements?

A.

Create a new app client in the directory. Create a listener rule for the ALB. Specify the authenticate-oidc action for the listener rule. Configure the listener rule with the appropriate issuer, client ID and secret, and endpoint details for the Active Directory service. Configure the new app client with the callback URL that the ALB provides.

B.

Configure an Amazon Cognito user pool. Configure the user pool with a federated identity provider (IdP) that has metadata from the directory. Create an app client. Associate the app client with the user pool. Create a listener rule for the ALB. Specify the authenticate-cognito action for the listener rule. Configure the listener rule to use the user pool and app client.

C.

Add the directory as a new 1AM identity provider (IdP). Create a new 1AM role that has an entity type of SAML 2.0 federation. Configure a role policy that allows access to the ALB. Configure the new role as the default authenticated user role for the IdP. Create a listener rule for the ALB. Specify the authenticate-oidc action for the listener rule.

D.

Enable AWS 1AM Identity Center (AWS Single Sign-On). Configure the directory as an external identity provider (IdP) that uses SAML. Use the automatic provisioning method. Create a new 1AM role that has an entity type of SAML 2.0 federation. Configure a role policy that allows access to the ALB. Attach the new role to all groups. Create a listener rule for the ALB. Specify the authenticate-cognito action for the listener rule.

A company is using AWS CloudFormation as its deployment tool for all applications. It stages all application binaries and templates within Amazon S3 buckets with versioning enabled. Developers use an Amazon EC2 instance with IDE access to modify and test applications. The developers want to implement CI/CD with AWS CodePipeline with the following requirements:

Use AWS CodeCommit for source control.

Automate unit testing and security scanning.

Alert developers when unit tests fail.

Toggle application features and allow lead developer approval before deployment.

Which solution will meet these requirements?

A.

Use AWS CodeBuild for testing and scanning. Use EventBridge and SNS for alerts. Use AWS CDK with a manifest to toggle features. Use a manual approval stage.

B.

Use Lambda for testing and alerts. Use AWS Amplify plugins for feature toggles. Use SES for manual approval.

C.

Use Jenkins and SES for alerts. Use nested CloudFormation stacks for features. Use Lambda for approvals.

D.

Use CodeDeploy for testing and scanning. Use CloudWatch alarms and SNS. Use Docker images for features and AWS CLI for toggles.

A company is running a traditional web application on Amazon EC2 instances. The company needsto refactor the application as microservices that run on containers. Separate versions of the application exist in two distinct environments: production and testing. Load for the application is variable, but the minimum load and the maximum load are known. A solutions architect needs to design the updated application with a serverless architecture that minimizes operational complexity.

Which solution will meet these requirements MOST cost-effectively?

A.

Upload the container images to AWS Lambda as functions. Configure a concurrency limit for the associated Lambda functions to handle the expected peak load. Configure two separate Lambda integrations within Amazon API Gateway: one for production and one for testing.

B.

Upload the container images to Amazon Elastic Container Registry (Amazon ECR). Configure two auto scaled Amazon Elastic Container Service (Amazon ECS) clusters with the Fargate launch type to handle the expected load. Deploy tasks from the ECR images. Configure two separate Application Load Balancers to direct traffic to the ECS clusters.

C.

Upload the container images to Amazon Elastic Container Registry (Amazon ECR). Configure two auto scaled Amazon Elastic Kubernetes Service (Amazon EKS) clusters with the Fargate launch type to handle the expected load. Deploy tasks from the ECR images. Configure two separate Application Load Balancers to direct traffic to the EKS clusters.

D.

Upload the container images to AWS Elastic Beanstalk. In Elastic Beanstalk, create separate environments and deployments for production and testing. Configure two separate Application Load Balancers to direct traffic to the Elastic Beanstalk deployments.

A company has developed a hybrid solution between its data center and AWS. The company uses Amazon VPC and Amazon EC2 instances that send application togs to Amazon CloudWatch. The EC2 instances read data from multiple relational databases that are hosted on premises.

The company wants to monitor which EC2 instances are connected to the databases in near-real time. The company already has a monitoring solution that uses Splunk on premises. A solutions architect needs to determine how to send networking traffic to Splunk.

How should the solutions architect meet these requirements?

A.

Enable VPC flows logs, and send them to CloudWatch. Create an AWS Lambda function to periodically export the CloudWatch logs to an Amazon S3 bucket by using the pre-defined export function. Generate ACCESS_KEY and SECRET_KEY AWS credentials. Configure Splunk to pull the logs from the S3 bucket by using those credentials.

B.

Create an Amazon Kinesis Data Firehose delivery stream with Splunk as the destination. Configure a pre-processing AWS Lambda function with a Kinesis Data Firehose stream processor that extracts individual log events from records sent by CloudWatch Logs subscription filters. Enable VPC flows logs, and send them to CloudWatch. Create a CloudWatch Logs subscription that sends log events to the Kinesis Data Firehose delivery stream.

C.

Ask the company to log every request that is made to the databases along with the EC2 instance IP address. Export the CloudWatch logs to an Amazon S3 bucket. Use Amazon Athena to query the logs grouped by database name. Export Athena results to another S3 bucket. Invoke an AWS Lambda function to automatically send any new file that is put in the S3 bucket to Splunk.

D.

Send the CloudWatch logs to an Amazon Kinesis data stream with Amazon Kinesis Data Analytics for SOL Applications. Configure a 1 -minute sliding window to collect the events. Create a SQL query that uses the anomaly detection template to monitor any networking traffic anomalies in near-real time. Send the result to an Amazon Kinesis Data Firehose delivery stream with Splunk as the destination.

A company is migrating internal business applications to Amazon EC2 and Amazon RDS in a VPC. The migration requires connecting the cloud-based applications to the on-premises internal network. The company wants to set up an AWS 5ite-to-5ite VPN connection. The company has created two separate customer gateways. The gateways are configured for static routing and have been assigned distinct public IP addresses.

Which solution will meet these requirements?

A.

Create one virtual private gateway. Associate the virtual private gateway with the VPC. Enable route propagation for the virtual private gateway in all VPC route tables. Create two Site-to-Slte VPN connections with two tunnels for each connection. Configure the Site-to-Slte VPN connections to use the virtual private gateway and to use separate customer gateways.

B.

Create one customer gateway. Associate the customer gateway with the VPC. Enable route propagation for the customer gateway in all VPC route tables. Create two Site-to-Site VPN connections with two tunnels for each connection. Configure the Site-to-Site VPN connections to use the customer gateway.

C.

Create two virtual private gateways. Associate the virtual private gateways with the VPC. Enable route propagation for both customer gateways in all VPC route tables. Create two Site-to-Site VPN connections with two tunnels for each connection. Configure the Site-to-Site VPN connections to use separate virtual private gateways and separate customer gateways.

D.

Create two virtual private gateways. Associate the virtual private gateways with the VPC. Enable route propagation for both customer gateways in all VPC route tables. Create four Site-to-Site VPN connections with one tunnel for each connection. Configure the Site-to-Site VPN connections into groups of two. Configure each group to connect to separate customer gateways and separate virtual private gateways.

A company has migrated a legacy application to the AWS Cloud. The application runs on three Amazon EC2 instances that are spread across three Availability Zones. One EC2 instance is in each Availability Zone. The EC2 instances are running in three private subnets of the VPC and are set up as targets for an Application Load Balancer (ALB) that is associated with three public subnets.

The application needs to communicate with on-premises systems. Only traffic from IP addresses in the company's IP address range are allowed to access the on-premises systems. The company's security team is bringing only one IP address from its internal IP address range to the cloud. The company has added this IP address to the allow list for the company firewall. The company also has created an Elastic IP address for this IP address.

A solutions architect needs to create a solution that gives the application the ability to communicate with the on-premises systems. The solution also must be able to mitigate failures automatically.

Which solution will meet these requirements?

A.

Deploy three NAT gateways, one in each public subnet. Assign the Elastic IP address to the NAT gateways. Turn on health checks for the NAT gateways. If a NAT gateway fails a health check, recreate the NAT gateway and assign the Elastic IP address to the new NAT gateway.

B.

Replace the ALB with a Network Load Balancer (NLB). Assign the Elastic IP address to the NLB Turn on health checks for the NLB. In the case of a failed health check, redeploy the NLB in different subnets.

C.

Deploy a single NAT gateway in a public subnet. Assign the Elastic IP address to the NAT gateway. Use Amazon CloudWatch with a custom metric tomonitor the NAT gateway. If the NAT gateway is unhealthy, invoke an AWS Lambda function to create a new NAT gateway in a different subnet. Assign the Elastic IP address to the new NAT gateway.

D.

Assign the Elastic IP address to the ALB. Create an Amazon Route 53 simple record with the Elastic IP address as the value. Create a Route 53 health check. In the case of a failed health check, recreate the ALB in different subnets.

An EC2-based ticketing service pulls a frequently updated pricing file (stored in S3) on startup. Sometimes EC2s have stale pricing, causing charge issues.

A.

Lambda updates DynamoDB with new prices.

B.

Lambda updates Amazon EFS.

C.

Use Mountpoint for S3 to mount the pricing file to EC2.

D.

Use Multi-Attach EBS volume for price file.

A retail company is hosting an ecommerce website on AWS across multiple AWS Regions. The company wants the website to be operational at all times for online purchases. The website stores data in an Amazon RDS for MySQL DB instance.

Which solution will provide the HIGHEST availability for the database?

A.

Configure automated backups on Amazon RDS. In the case of disruption, promote an automated backup to be a standalone DB instance. Direct database traffic to the promoted DB instance. Create a replacement read replica that has the promoted DB instance as its source.

B.

Configure global tables and read replicas on Amazon RDS. Activate the cross-Region scope. In the case of disruption, use AWS Lambda to copy the read replicas from one Region to another Region.

C.

Configure global tables and automated backups on Amazon RDS. In the case of disruption, use AWS Lambda to copy the read replicas from one Region to another Region.

D.

Configure read replicas on Amazon RDS. In the case of disruption, promote a cross-Region and read replica to be a standalone DB instance. Direct database traffic to the promoted DB instance. Create a replacement read replica that has the promoted DB instance as its source.

A company has multiple AWS accounts. The company recently had a security audit that revealed many unencrypted Amazon Elastic Block Store (Amazon EBS) volumes attached to Amazon EC2 instances.

A solutions architect must encrypt the unencrypted volumes and ensure that unencrypted volumes will be detected automatically in the future. Additionally, the company wants a solution that can centrally manage multiple AWS accounts with a focus on compliance and security.

Which combination of steps should the solutions architect take to meet these requirements? (Choose two.)

A.

Create an organization in AWS Organizations. Set up AWS Control Tower, and turn on the strongly recommended guardrails. Join all accounts to the organization. Categorize the AWS accounts into OUs.

B.

Use the AWS CLI to list all the unencrypted volumes in all the AWS accounts. Run a script to encrypt all the unencrypted volumes in place.

C.

Create a snapshot of each unencrypted volume. Create a new encrypted volume from the unencrypted snapshot. Detach the existing volume, and replace it with the encrypted volume.

D.

Create an organization in AWS Organizations. Set up AWS Control Tower, and turn on the mandatory guardrails. Join all accounts to the organization. Categorize the AWS accounts into OUs.

E.

Turn on AWS CloudTrail. Configure an Amazon EventBridge (Amazon CloudWatch Events) rule to detect and automatically encrypt unencrypted volumes.

A company runs a web application on AWS. The web application delivers static content from an Amazon S3 bucket that is behind an Amazon CloudFront distribution. The application serves dynamic content by using an Application Load Balancer (ALB) that distributes requests to a fleet of Amazon EC2 instances in Auto Scaling groups. The application uses a domain name setup in Amazon Route 53.

Some users reported occasional issues when the users attempted to access the website during peak hours. An operations team found that the ALB sometimes returned HTTP 503 Service Unavailable errors. The company wants to display a custom error message page when these errors occur. The page should be displayed immediately for this error code.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Set up a Route 53 failover routing policy. Configure a health check to determine the status of the ALB endpoint and to fail over to the failover S3 bucket endpoint.

B.

Create a second CloudFront distribution and an S3 static website to host the custom error page. Set up a Route 53 failover routing policy. Use an active-passive configuration between the two distributions.

C.

Create a CloudFront origin group that has two origins. Set the ALB endpoint as the primary origin. For the secondary origin, set an S3 bucket that is configured to host a static website Set up origin failover for the CloudFront distribution. Update the S3 static website to incorporate the custom error page.

D.

Create a CloudFront function that validates each HTTP response code that the ALB returns. Create an S3 static website in an S3 bucket. Upload the custom error page to the S3 bucket as a failover. Update the function to read the S3 bucket and to serve the error page to the end users.

A company has an organization in AWS Organizations that includes a separate AWS account for each of the company's departments. Application teams from different

departments develop and deploy solutions independently.

The company wants to reduce compute costs and manage costs appropriately across departments. The company also wants to improve visibility into billing for individual departments. The company does not want to lose operational flexibility when the company selects compute resources.

Which solution will meet these requirements?

A.

Use AWS Budgets for each department. Use Tag Editor to apply tags to appropriate resources. Purchase EC2 Instance Savings Plans.

B.

Configure AWS Organizations to use consolidated billing. Implement a tagging strategy that identifies departments. Use SCPs to apply tags to appropriateresources. Purchase EC2 Instance Savings Plans.

C.

Configure AWS Organizations to use consolidated billing. Implement a tagging strategy that identifies departments. Use Tag Editor to apply tags to appropriate resources. Purchase Compute Savings Plans.

D.

Use AWS Budgets for each department. Use SCPs to apply tags to appropriate resources. Purchase Compute Savings Plans.

Page: 1 / 6
Total 562 questions
Copyright © 2014-2025 Solution2Pass. All Rights Reserved