Professional-Machine-Learning-Engineer Google Professional Machine Learning Engineer Free Practice Exam Questions (2025 Updated)
Prepare effectively for your Google Professional-Machine-Learning-Engineer Google Professional Machine Learning Engineer certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2025, ensuring you have the most current resources to build confidence and succeed on your first attempt.
Total 285 questions
Your organization’s marketing team is building a customer recommendation chatbot that uses a generative AI large language model (LLM) to provide personalized product suggestions in real time. The chatbot needs to access data from millions of customers, including purchase history, browsing behavior, and preferences. The data is stored in a Cloud SQL for PostgreSQL database. You need the chatbot response time to be less than 100ms. How should you design the system?
You have recently developed a custom model for image classification by using a neural network. You need to automatically identify the values for learning rate, number of layers, and kernel size. To do this, you plan to run multiple jobs in parallel to identify the parameters that optimize performance. You want to minimize custom code development and infrastructure management. What should you do?
You need to build an ML model for a social media application to predict whether a user’s submitted profile photo meets the requirements. The application will inform the user if the picture meets the requirements. How should you build a model to ensure that the application does not falsely accept a non-compliant picture?
Your company manages an application that aggregates news articles from many different online sources and sends them to users. You need to build a recommendation model that will suggest articles to readers that are similar to the articles they are currently reading. Which approach should you use?
You are training a TensorFlow model on a structured data set with 100 billion records stored in several CSV files. You need to improve the input/output execution performance. What should you do?
You are building a MLOps platform to automate your company's ML experiments and model retraining. You need to organize the artifacts for dozens of pipelines How should you store the pipelines' artifacts'?
You built and manage a production system that is responsible for predicting sales numbers. Model accuracy is crucial, because the production model is required to keep up with market changes. Since being deployed to production, the model hasn't changed; however the accuracy of the model has steadily deteriorated. What issue is most likely causing the steady decline in model accuracy?
You are an ML engineer at a regulated insurance company. You are asked to develop an insurance approval model that accepts or rejects insurance applications from potential customers. What factors should you consider before building the model?
You are investigating the root cause of a misclassification error made by one of your models. You used Vertex Al Pipelines to tram and deploy the model. The pipeline reads data from BigQuery. creates a copy of the data in Cloud Storage in TFRecord format trains the model in Vertex Al Training on that copy, and deploys the model to a Vertex Al endpoint. You have identified the specific version of that model that misclassified: and you need to recover the data this model was trained on. How should you find that copy of the data'?
You need to design a customized deep neural network in Keras that will predict customer purchases based on their purchase history. You want to explore model performance using multiple model architectures, store training data, and be able to compare the evaluation metrics in the same dashboard. What should you do?
You work for an international manufacturing organization that ships scientific products all over the world Instruction manuals for these products need to be translated to 15 different languages Your organization's leadership team wants to start using machine learning to reduce the cost of manual human translations and increase translation speed. You need to implement a scalable solution that maximizes accuracy and minimizes operational overhead. You also want to include a process to evaluate and fix incorrect translations. What should you do?
You work for a retail company. You have been asked to develop a model to predict whether a customer will purchase a product on a given day. Your team has processed the company's sales data, and created a table with the following rows:
• Customer_id
• Product_id
• Date
• Days_since_last_purchase (measured in days)
• Average_purchase_frequency (measured in 1/days)
• Purchase (binary class, if customer purchased product on the Date)
You need to interpret your models results for each individual prediction. What should you do?
You are an ML engineer in the contact center of a large enterprise. You need to build a sentiment analysis tool that predicts customer sentiment from recorded phone conversations. You need to identify the best approach to building a model while ensuring that the gender, age, and cultural differences of the customers who called the contact center do not impact any stage of the model development pipeline and results. What should you do?
You have deployed a model on Vertex AI for real-time inference. During an online prediction request, you get an “Out of Memory” error. What should you do?
You work for a manufacturing company. You need to train a custom image classification model to detect product detects at the end of an assembly line. Although your model is performing well, some images in your holdout set are consistently mislabeled with high confidence. You want to use Vertex Al to understand your models results. What should you do?
You work for a bank and are building a random forest model for fraud detection. You have a dataset that
includes transactions, of which 1% are identified as fraudulent. Which data transformation strategy would likely improve the performance of your classifier?
Your company manages an ecommerce website. You developed an ML model that recommends additional products to users in near real time based on items currently in the user's cart. The workflow will include the following processes.
1 The website will send a Pub/Sub message with the relevant data and then receive a message with the prediction from Pub/Sub.
2 Predictions will be stored in BigQuery
3. The model will be stored in a Cloud Storage bucket and will be updated frequently
You want to minimize prediction latency and the effort required to update the model How should you reconfigure the architecture?
You work for a company that is developing an application to help users with meal planning You want to use machine learning to scan a corpus of recipes and extract each ingredient (e g carrot, rice pasta) and each kitchen cookware (e.g. bowl, pot spoon) mentioned Each recipe is saved in an unstructured text file What should you do?
You work for an online publisher that delivers news articles to over 50 million readers. You have built an AI model that recommends content for the company’s weekly newsletter. A recommendation is considered successful if the article is opened within two days of the newsletter’s published date and the user remains on the page for at least one minute.
All the information needed to compute the success metric is available in BigQuery and is updated hourly. The model is trained on eight weeks of data, on average its performance degrades below the acceptable baseline after five weeks, and training time is 12 hours. You want to ensure that the model’s performance is above the acceptable baseline while minimizing cost. How should you monitor the model to determine when retraining is necessary?
You work on the data science team for a multinational beverage company. You need to develop an ML model to predict the company’s profitability for a new line of naturally flavored bottled waters in different locations. You are provided with historical data that includes product types, product sales volumes, expenses, and profits for all regions. What should you use as the input and output for your model?
Total 285 questions