Month End Sale - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmaspas7

Easiest Solution 2 Pass Your Certification Exams

Professional-Machine-Learning-Engineer Google Professional Machine Learning Engineer Free Practice Exam Questions (2025 Updated)

Prepare effectively for your Google Professional-Machine-Learning-Engineer Google Professional Machine Learning Engineer certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2025, ensuring you have the most current resources to build confidence and succeed on your first attempt.

You have trained a model on a dataset that required computationally expensive preprocessing operations. You need to execute the same preprocessing at prediction time. You deployed the model on Al Platform for high-throughput online prediction. Which architecture should you use?

A.

• Validate the accuracy of the model that you trained on preprocessed data

• Create a new model that uses the raw data and is available in real time

• Deploy the new model onto Al Platform for online prediction

B.

• Send incoming prediction requests to a Pub/Sub topic

• Transform the incoming data using a Dataflow job

• Submit a prediction request to Al Platform using the transformed data

• Write the predictions to an outbound Pub/Sub queue

C.

• Stream incoming prediction request data into Cloud Spanner

• Create a view to abstract your preprocessing logic.

• Query the view every second for new records

• Submit a prediction request to Al Platform using the transformed data

• Write the predictions to an outbound Pub/Sub queue.

D.

• Send incoming prediction requests to a Pub/Sub topic

• Set up a Cloud Function that is triggered when messages are published to the Pub/Sub topic.

• Implement your preprocessing logic in the Cloud Function

• Submit a prediction request to Al Platform using the transformed data

• Write the predictions to an outbound Pub/Sub queue

Your organization's call center has asked you to develop a model that analyzes customer sentiments in each call. The call center receives over one million calls daily, and data is stored in Cloud Storage. The data collected must not leave the region in which the call originated, and no Personally Identifiable Information (Pll) can be stored or analyzed. The data science team has a third-party tool for visualization and access which requires a SQL ANSI-2011 compliant interface. You need to select components for data processing and for analytics. How should the data pipeline be designed?

A.

1 = Dataflow, 2 = BigQuery

B.

1 = Pub/Sub, 2 = Datastore

C.

1 = Dataflow, 2 = Cloud SQL

D.

1 = Cloud Function, 2 = Cloud SQL

You have developed a fraud detection model for a large financial institution using Vertex AI. The model achieves high accuracy, but stakeholders are concerned about potential bias based on customer demographics. You have been asked to provide insights into the model's decision-making process and identify any fairness issues. What should you do?

A.

Enable Vertex AI Model Monitoring to detect training-serving skew. Configure an alert to send an email when the skew or drift for a model’s feature exceeds a predefined threshold. Retrain the model by appending new data to existing training data.

B.

Compile a dataset of unfair predictions. Use Vertex AI Vector Search to identify similar data points in the model's predictions. Report these data points to the stakeholders.

C.

Use feature attribution in Vertex AI to analyze model predictions and the impact of each feature on the model's predictions.

D.

Create feature groups using Vertex AI Feature Store to segregate customer demographic features and non-demographic features. Retrain the model using only non-demographic features.

You are creating a deep neural network classification model using a dataset with categorical input values. Certain columns have a cardinality greater than 10,000 unique values. How should you encode these categorical values as input into the model?

A.

Convert each categorical value into an integer value.

B.

Convert the categorical string data to one-hot hash buckets.

C.

Map the categorical variables into a vector of boolean values.

D.

Convert each categorical value into a run-length encoded string.

You developed a Vertex Al ML pipeline that consists of preprocessing and training steps and each set of steps runs on a separate custom Docker image Your organization uses GitHub and GitHub Actions as CI/CD to run unit and integration tests You need to automate the model retraining workflow so that it can be initiated both manually and when a new version of the code is merged in the main branch You want to minimize the steps required to build the workflow while also allowing for maximum flexibility How should you configure the CI/CD workflow?

A.

Trigger a Cloud Build workflow to run tests build custom Docker images, push the images to Artifact Registry and launch the pipeline in Vertex Al Pipelines.

B.

Trigger GitHub Actions to run the tests launch a job on Cloud Run to build custom Docker images push the images to Artifact Registry and launch the pipeline in Vertex Al Pipelines.

C.

Trigger GitHub Actions to run the tests build custom Docker images push the images to Artifact Registry, and launch the pipeline in Vertex Al Pipelines.

D.

Trigger GitHub Actions to run the tests launch a Cloud Build workflow to build custom Dicker images, push the images to Artifact Registry, and launch the pipeline in Vertex Al Pipelines.

You have been given a dataset with sales predictions based on your company’s marketing activities. The data is structured and stored in BigQuery, and has been carefully managed by a team of data analysts. You need to prepare a report providing insights into the predictive capabilities of the data. You were asked to run several ML models with different levels of sophistication, including simple models and multilayered neural networks. You only have a few hours to gather the results of your experiments. Which Google Cloud tools should you use to complete this task in the most efficient and self-serviced way?

A.

Use BigQuery ML to run several regression models, and analyze their performance.

B.

Read the data from BigQuery using Dataproc, and run several models using SparkML.

C.

Use Vertex AI Workbench user-managed notebooks with scikit-learn code for a variety of ML algorithms and performance metrics.

D.

Train a custom TensorFlow model with Vertex AI, reading the data from BigQuery featuring a variety of ML algorithms.

You recently used BigQuery ML to train an AutoML regression model. You shared results with your team and received positive feedback. You need to deploy your model for online prediction as quickly as possible. What should you do?

A.

Retrain the model by using BigQuery ML. and specify Vertex Al as the model registry Deploy the model from Vertex Al Model Registry to a Vertex Al endpoint.

B.

Retrain the model by using Vertex Al Deploy the model from Vertex Al Model Registry to a Vertex Al endpoint.

C.

Alter the model by using BigQuery ML and specify Vertex Al as the model registry Deploy the model from Vertex Al Model Registry to a Vertex Al endpoint.

D.

Export the model from BigQuery ML to Cloud Storage Import the model into Vertex Al Model Registry Deploy the model to a Vertex Al endpoint.

You are an ML engineer at a large grocery retailer with stores in multiple regions. You have been asked to create an inventory prediction model. Your models features include region, location, historical demand, and seasonal popularity. You want the algorithm to learn from new inventory data on a daily basis. Which algorithms should you use to build the model?

A.

Classification

B.

Reinforcement Learning

C.

Recurrent Neural Networks (RNN)

D.

Convolutional Neural Networks (CNN)

You are an ML engineer at a bank that has a mobile application. Management has asked you to build an ML-based biometric authentication for the app that verifies a customer's identity based on their fingerprint. Fingerprints are considered highly sensitive personal information and cannot be downloaded and stored into the bank databases. Which learning strategy should you recommend to train and deploy this ML model?

A.

Differential privacy

B.

Federated learning

C.

MD5 to encrypt data

D.

Data Loss Prevention API

You work at an organization that maintains a cloud-based communication platform that integrates conventional chat, voice, and video conferencing into one platform. The audio recordings are stored in Cloud Storage. All recordings have an 8 kHz sample rate and are more than one minute long. You need to implement a new feature in the platform that will automatically transcribe voice call recordings into a text for future applications, such as call summarization and sentiment analysis. How should you implement the voice call transcription feature following Google-recommended best practices?

A.

Use the original audio sampling rate, and transcribe the audio by using the Speech-to-Text API with synchronous recognition.

B.

Use the original audio sampling rate, and transcribe the audio by using the Speech-to-Text API with asynchronous recognition.

C.

Upsample the audio recordings to 16 kHz. and transcribe the audio by using the Speech-to-Text API with synchronous recognition.

D.

Upsample the audio recordings to 16 kHz. and transcribe the audio by using the Speech-to-Text API with asynchronous recognition.

You work at a subscription-based company. You have trained an ensemble of trees and neural networks to predict customer churn, which is the likelihood that customers will not renew their yearly subscription. The average prediction is a 15% churn rate, but for a particular customer the model predicts that they are 70% likely to churn. The customer has a product usage history of 30%, is located in New York City, and became a customer in 1997. You need to explain the difference between the actual prediction, a 70% churn rate, and the average prediction. You want to use Vertex Explainable AI. What should you do?

A.

Train local surrogate models to explain individual predictions.

B.

Configure sampled Shapley explanations on Vertex Explainable AI.

C.

Configure integrated gradients explanations on Vertex Explainable AI.

D.

Measure the effect of each feature as the weight of the feature multiplied by the feature value.

You are an ML engineer at an ecommerce company and have been tasked with building a model that predicts how much inventory the logistics team should order each month. Which approach should you take?

A.

Use a clustering algorithm to group popular items together. Give the list to the logistics team so they can increase inventory of the popular items.

B.

Use a regression model to predict how much additional inventory should be purchased each month. Give the results to the logistics team at the beginning of the month so they can increase inventory by the amount predicted by the model.

C.

Use a time series forecasting model to predict each item's monthly sales. Give the results to the logistics team so they can base inventory on the amount predicted by the model.

D.

Use a classification model to classify inventory levels as UNDER_STOCKED, OVER_STOCKED, and CORRECTLY_STOCKED. Give the report to the logistics team each month so they can fine-tune inventory levels.

You work for a large technology company that wants to modernize their contact center. You have been asked to develop a solution to classify incoming calls by product so that requests can be more quickly routed to the correct support team. You have already transcribed the calls using the Speech-to-Text API. You want to minimize data preprocessing and development time. How should you build the model?

A.

Use the Al Platform Training built-in algorithms to create a custom model

B.

Use AutoML Natural Language to extract custom entities for classification

C.

Use the Cloud Natural Language API to extract custom entities for classification

D.

Build a custom model to identify the product keywords from the transcribed calls, and then run the keywords through a classification algorithm

Your team is training a large number of ML models that use different algorithms, parameters and datasets. Some models are trained in Vertex Ai Pipelines, and some are trained on Vertex Al Workbench notebook instances. Your team wants to compare the performance of the models across both services. You want to minimize the effort required to store the parameters and metrics What should you do?

A.

Implement an additional step for all the models running in pipelines and notebooks to export parameters and metrics to BigQuery.

B.

Create a Vertex Al experiment Submit all the pipelines as experiment runs. For models trained on notebooks log parameters and metrics by using the Vertex Al SDK.

C.

Implement all models in Vertex Al Pipelines Create a Vertex Al experiment, and associate all pipeline runs with that experiment.

D.

Store all model parameters and metrics as mode! metadata by using the Vertex Al Metadata API.

You recently built the first version of an image segmentation model for a self-driving car. After deploying the model, you observe a decrease in the area under the curve (AUC) metric. When analyzing the video recordings, you also discover that the model fails in highly congested traffic but works as expected when there is less traffic. What is the most likely reason for this result?

A.

The model is overfitting in areas with less traffic and underfitting in areas with more traffic.

B.

AUC is not the correct metric to evaluate this classification model.

C.

Too much data representing congested areas was used for model training.

D.

Gradients become small and vanish while backpropagating from the output to input nodes.

You have created multiple versions of an ML model and have imported them to Vertex AI Model Registry. You want to perform A/B testing to identify the best-performing model using the simplest approach. What should you do?

A.

Split incoming traffic among separate Cloud Run instances of deployed models. Monitor the performance of each version using Cloud Monitoring.

B.

Split incoming traffic to distribute prediction requests among the versions. Monitor the performance of each version using Looker Studio dashboards that compare logged data for each version.

C.

Split incoming traffic among Google Kubernetes Engine (GKE) clusters and use Traffic Director to distribute prediction requests to different versions. Monitor the performance of each version using Cloud Monitoring.

D.

Split incoming traffic to distribute prediction requests among the versions. Monitor the performance of each version using Vertex AI’s built-in monitoring tools.

You are working on a Neural Network-based project. The dataset provided to you has columns with different ranges. While preparing the data for model training, you discover that gradient optimization is having difficulty moving weights to a good solution. What should you do?

A.

Use feature construction to combine the strongest features.

B.

Use the representation transformation (normalization) technique.

C.

Improve the data cleaning step by removing features with missing values.

D.

Change the partitioning step to reduce the dimension of the test set and have a larger training set.

You work for a bank You have been asked to develop an ML model that will support loan application decisions. You need to determine which Vertex Al services to include in the workflow You want to track the model's training parameters and the metrics per training epoch. You plan to compare the performance of each version of the model to determine the best model based on your chosen metrics. Which Vertex Al services should you use?

A.

Vertex ML Metadata Vertex Al Feature Store, and Vertex Al Vizier

B.

Vertex Al Pipelines. Vertex Al Experiments, and Vertex Al Vizier

C.

Vertex ML Metadata Vertex Al Experiments, and Vertex Al TensorBoard

D.

Vertex Al Pipelines. Vertex Al Feature Store, and Vertex Al TensorBoard

You have recently developed a new ML model in a Jupyter notebook. You want to establish a reliable and repeatable model training process that tracks the versions and lineage of your model artifacts. You plan to retrain your model weekly. How should you operationalize your training process?

A.

1. Create an instance of the CustomTrainingJob class with the Vertex AI SDK to train your model.

2. Using the Notebooks API, create a scheduled execution to run the training code weekly.

B.

1. Create an instance of the CustomJob class with the Vertex AI SDK to train your model.

2. Use the Metadata API to register your model as a model artifact.

3. Using the Notebooks API, create a scheduled execution to run the training code weekly.

C.

1. Create a managed pipeline in Vertex Al Pipelines to train your model by using a Vertex Al CustomTrainingJoOp component.

2. Use the ModelUploadOp component to upload your model to Vertex Al Model Registry.

3. Use Cloud Scheduler and Cloud Functions to run the Vertex Al pipeline weekly.

D.

1. Create a managed pipeline in Vertex Al Pipelines to train your model using a Vertex Al HyperParameterTuningJobRunOp component.

2. Use the ModelUploadOp component to upload your model to Vertex Al Model Registry.

3. Use Cloud Scheduler and Cloud Functions to run the Vertex Al pipeline weekly.

Your team is working on an NLP research project to predict political affiliation of authors based on articles they have written. You have a large training dataset that is structured like this:

You followed the standard 80%-10%-10% data distribution across the training, testing, and evaluation subsets. How should you distribute the training examples across the train-test-eval subsets while maintaining the 80-10-10 proportion?

A)

B)

C)

D)

A.

Option A

B.

Option B

C.

Option C

D.

Option D

Copyright © 2014-2025 Solution2Pass. All Rights Reserved