New Year Sale Special - Limited Time 70% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: xmaspas7

Easiest Solution 2 Pass Your Certification Exams

Data-Engineer-Associate Amazon Web Services AWS Certified Data Engineer - Associate (DEA-C01) Free Practice Exam Questions (2025 Updated)

Prepare effectively for your Amazon Web Services Data-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01) certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2025, ensuring you have the most current resources to build confidence and succeed on your first attempt.

A company has as JSON file that contains personally identifiable information (PIT) data and non-PII data. The company needs to make the data available for querying and analysis. The non-PII data must be available to everyone in the company. The PII data must be available only to a limited group of employees. Which solution will meet these requirements with the LEAST operational overhead?

A.

Store the JSON file in an Amazon S3 bucket. Configure AWS Glue to split the file into one file that contains the PII data and one file that contains the non-PII data. Store the output files in separate S3 buckets. Grant the required access to the buckets based on the type of user.

B.

Store the JSON file in an Amazon S3 bucket. Use Amazon Macie to identify PII data and to grant access based on the type of user.

C.

Store the JSON file in an Amazon S3 bucket. Catalog the file schema in AWS Lake Formation. Use Lake Formation permissions to provide access to the required data based on the type of user.

D.

Create two Amazon RDS PostgreSQL databases. Load the PII data and the non-PII data into the separate databases. Grant access to the databases based on the type of user.

A data engineer is building a data pipeline on AWS by using AWS Glue extract, transform, and load (ETL) jobs. The data engineer needs to process data from Amazon RDS and MongoDB, perform transformations, and load the transformed data into Amazon Redshift for analytics. The data updates must occur every hour.

Which combination of tasks will meet these requirements with the LEAST operational overhead? (Choose two.)

A.

Configure AWS Glue triggers to run the ETL jobs even/ hour.

B.

Use AWS Glue DataBrewto clean and prepare the data for analytics.

C.

Use AWS Lambda functions to schedule and run the ETL jobs even/ hour.

D.

Use AWS Glue connections to establish connectivity between the data sources and Amazon Redshift.

E.

Use the Redshift Data API to load transformed data into Amazon Redshift.

A retail company is using an Amazon Redshift cluster to support real-time inventory management. The company has deployed an ML model on a real-time endpoint in Amazon SageMaker.

The company wants to make real-time inventory recommendations. The company also wants to make predictions about future inventory needs.

Which solutions will meet these requirements? (Select TWO.)

A.

Use Amazon Redshift ML to generate inventory recommendations.

B.

Use SQL to invoke a remote SageMaker endpoint for prediction.

C.

Use Amazon Redshift ML to schedule regular data exports for offline model training.

D.

Use SageMaker Autopilot to create inventory management dashboards in Amazon Redshift.

E.

Use Amazon Redshift as a file storage system to archive old inventory management reports.

A company maintains an Amazon Redshift provisioned cluster that the company uses for extract, transform, and load (ETL) operations to support critical analysis tasks. A sales team within the company maintains a Redshift cluster that the sales team uses for business intelligence (BI) tasks.

The sales team recently requested access to the data that is in the ETL Redshift cluster so the team can perform weekly summary analysis tasks. The sales team needs to join data from the ETL cluster with data that is in the sales team's BI cluster.

The company needs a solution that will share the ETL cluster data with the sales team without interrupting the critical analysis tasks. The solution must minimize usage of the computing resources of the ETL cluster.

Which solution will meet these requirements?

A.

Set up the sales team Bl cluster as a consumer of the ETL cluster by using Redshift data sharing.

B.

Create materialized views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

C.

Create database views based on the sales team's requirements. Grant the sales team direct access to the ETL cluster.

D.

Unload a copy of the data from the ETL cluster to an Amazon S3 bucket every week. Create an Amazon Redshift Spectrum table based on the content of the ETL cluster.

A company uses Amazon Redshift as a data warehouse solution. One of the datasets that the company stores in Amazon Redshift contains data for a vendor.

Recently, the vendor asked the company to transfer the vendor's data into the vendor's Amazon S3 bucket once each week.

Which solution will meet this requirement?

A.

Create an AWS Lambda function to connect to the Redshift data warehouse. Configure the Lambda function to use the Redshift COPY command to copy the required data to the vendor's S3 bucket on a schedule.

B.

Create an AWS Glue job to connect to the Redshift data warehouse. Configure the AWS Glue job to use the Redshift UNLOAD command to load the required data to the vendor's S3 bucket on a schedule.

C.

Use the Amazon Redshift data sharing feature. Set the vendor's S3 bucket as the destination. Configure the source to be as a custom SQL query that selects the required data.

D.

Configure Amazon Redshift Spectrum to use the vendor's S3 bucket as destination. Enable data querying in both directions.

A company receives a daily file that contains customer data in .xls format. The company stores the file in Amazon S3. The daily file is approximately 2 GB in size.

A data engineer concatenates the column in the file that contains customer first names and the column that contains customer last names. The data engineer needs to determine the number of distinct customers in the file.

Which solution will meet this requirement with the LEAST operational effort?

A.

Create and run an Apache Spark job in an AWS Glue notebook. Configure the job to read the S3 file and calculate the number of distinct customers.

B.

Create an AWS Glue crawler to create an AWS Glue Data Catalog of the S3 file. Run SQL queries from Amazon Athena to calculate the number of distinct customers.

C.

Create and run an Apache Spark job in Amazon EMR Serverless to calculate the number of distinct customers.

D.

Use AWS Glue DataBrew to create a recipe that uses the COUNT_DISTINCT aggregate function to calculate the number of distinct customers.

A data engineer must use AWS services to ingest a dataset into an Amazon S3 data lake. The data engineer profiles the dataset and discovers that the dataset contains personally identifiable information (PII). The data engineer must implement a solution to profile the dataset and obfuscate the PII.

Which solution will meet this requirement with the LEAST operational effort?

A.

Use an Amazon Kinesis Data Firehose delivery stream to process the dataset. Create an AWS Lambda transform function to identify the PII. Use an AWS SDK to obfuscate the PII. Set the S3 data lake as the target for the delivery stream.

B.

Use the Detect PII transform in AWS Glue Studio to identify the PII. Obfuscate the PII. Use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake.

C.

Use the Detect PII transform in AWS Glue Studio to identify the PII. Create a rule in AWS Glue Data Quality to obfuscate the PII. Use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake.

D.

Ingest the dataset into Amazon DynamoDB. Create an AWS Lambda function to identify and obfuscate the PII in the DynamoDB table and to transform the data. Use the same Lambda function to ingest the data into the S3 data lake.

A company stores time-series data that is collected from streaming services in an Amazon S3 bucket. The company must ensure that only workloads that are deployed within the company's VPC can access the data.

Which solution will meet this requirement?

A.

Create an S3 bucket policy that uses a condition to allow access only to traffic that originates from the company's VPC.

B.

Apply a security group to the S3 bucket that allows connections only from the company's VPC CIDR block.

C.

Define an IAM policy that denies access to all users unless the request originates from within the company's VPC.

D.

Use a network ACL on the VPC subnets to allow only specific resources to access the S3 bucket.

A car sales company maintains data about cars that are listed for sale in an area. The company receives data about new car listings from vendors who upload the data daily as compressed files into Amazon S3. The compressed files are up to 5 KB in size. The company wants to see the most up-to-date listings as soon as the data is uploaded to Amazon S3.

A data engineer must automate and orchestrate the data processing workflow of the listings to feed a dashboard. The data engineer must also provide the ability to perform one-time queries and analytical reporting. The query solution must be scalable.

Which solution will meet these requirements MOST cost-effectively?

A.

Use an Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Apache Hive for one-time queries and analytical reporting. Use Amazon OpenSearch Service to bulk ingest the data into compute optimized instances. Use OpenSearch Dashboards in OpenSearch Service for the dashboard.

B.

Use a provisioned Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

C.

Use AWS Glue to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Redshift Spectrum for one-time queries and analytical reporting. Use OpenSearch Dashboards in Amazon OpenSearch Service for the dashboard.

D.

Use AWS Glue to process incoming data. Use AWS Lambda and S3 Event Notifications to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

A company stores sensitive data in an Amazon Redshift table. The company needs to give specific users the ability to access the sensitive data. The company must not create duplication in the data.

Customer support users must be able to see the last four characters of the sensitive data. Audit users must be able to see the full value of the sensitive data. No other users can have the ability to access the sensitive information.

Which solution will meet these requirements?

A.

Create a dynamic data masking policy to allow access based on each user role. Create IAM roles that have specific access permissions. Attach the masking policy to the column that contains sensitive data.

B.

Enable metadata security on the Redshift cluster. Create IAM users and IAM roles for the customer support users and the audit users. Grant the IAM users and IAM roles permissions to view the metadata in the Redshift cluster.

C.

Create a row-level security policy to allow access based on each user role. Create IAM roles that have specific access permissions. Attach the security policy to the table.

D.

Create an AWS Glue job to redact the sensitive data and to load the data into a new Redshift table.

A company uses Amazon Redshift for its data warehouse. The company must automate refresh schedules for Amazon Redshift materialized views.

Which solution will meet this requirement with the LEAST effort?

A.

Use Apache Airflow to refresh the materialized views.

B.

Use an AWS Lambda user-defined function (UDF) within Amazon Redshift to refresh the materialized views.

C.

Use the query editor v2 in Amazon Redshift to refresh the materialized views.

D.

Use an AWS Glue workflow to refresh the materialized views.

A company stores sales data in an Amazon RDS for MySQL database. The company needs to start a reporting process between 6:00 A.M. and 6:10 A.M. every Monday. The reporting process must generate a CSV file and store the file in an Amazon S3 bucket.

Which combination of steps will meet these requirements with the LEAST operational overhead? (Select TWO.)

A.

Create an Amazon EventBridge rule to run every Monday at 6:00 A.M.

B.

Create an Amazon EventBridge Scheduler to run every Monday at 6:00 A.M.

C.

Create and invoke an AWS Batch job that runs a script in an Amazon Elastic Container Service (Amazon ECS) container. Configure the script to generate the report and to save it to the S3 bucket.

D.

Create and invoke an AWS Glue ETL job to generate the report and to save it to the S3 bucket.

E.

Create and invoke an Amazon EMR Serverless job to generate the report and to save it to the S3 bucket.

A company analyzes data in a data lake every quarter to perform inventory assessments. A data engineer uses AWS Glue DataBrew to detect any personally identifiable information (PII) about customers within the data. The company's privacy policy considers some custom categories of information to be PII. However, the categories are not included in standard DataBrew data quality rules.

The data engineer needs to modify the current process to scan for the custom PII categories across multiple datasets within the data lake.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Manually review the data for custom PII categories.

B.

Implement custom data quality rules in Data Brew. Apply the custom rules across datasets.

C.

Develop custom Python scripts to detect the custom PII categories. Call the scripts from DataBrew.

D.

Implement regex patterns to extract PII information from fields during extract transform, and load (ETL) operations into the data lake.

A company uses AWS Glue jobs to implement several data pipelines. The pipelines are critical to the company.

The company needs to implement a monitoring mechanism that will alert stakeholders if the pipelines fail.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an Amazon EventBridge rule to match AWS Glue job failure events. Configure the rule to target an AWS Lambda function to process events. Configure the function to send notifications to an Amazon Simple Notification Service (Amazon SNS) topic.

B.

Configure an Amazon CloudWatch Logs log group for the AWS Glue jobs. Create an Amazon EventBridge rule to match new log creation events in the log group. Configure the rule to target an AWS Lambda function that reads the logs and sends notifications to an Amazon Simple Notification Service (Amazon SNS) topic if AWS Glue job failure logs are present.

C.

Create an Amazon EventBridge rule to match AWS Glue job failure events. Define an Amazon CloudWatch metric based on the EventBridge rule. Set up a CloudWatch alarm based on the metric to send notifications to an Amazon Simple Notification Service (Amazon SNS) topic.

D.

Configure an Amazon CloudWatch Logs log group for the AWS Glue jobs. Create an Amazon EventBridge rule to match new log creation events in the log group. Configure the rule to send notifications to an Amazon Simple Notification Service (Amazon SNS) topic.

A company stores customer records in Amazon S3. The company must not delete or modify the customer record data for 7 years after each record is created. The root user also must not have the ability to delete or modify the data.

A data engineer wants to use S3 Object Lock to secure the data.

Which solution will meet these requirements?

A.

Enable governance mode on the S3 bucket. Use a default retention period of 7 years.

B.

Enable compliance mode on the S3 bucket. Use a default retention period of 7 years.

C.

Place a legal hold on individual objects in the S3 bucket. Set the retention period to 7 years.

D.

Set the retention period for individual objects in the S3 bucket to 7 years.

A data engineer notices slow query performance on a highly partitioned table that is in Amazon Athena. The table contains daily data for the previous 5 years, partitioned by date. The data engineer wants to improve query performance and to automate partition management. Which solution will meet these requirements?

A.

Use an AWS Lambda function that runs daily. Configure the function to manually create new partitions in AW5 Glue for each day's data.

B.

Use partition projection in Athena. Configure the table properties by using a date range from 5 years ago to the present.

C.

Reduce the number of partitions by changing the partitioning schema from dairy to monthly granularity.

D.

Increase the processing capacity of Athena queries by allocating more compute resources.

A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.

The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.

Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)

A.

Use AWS CloudFormation to automate the Step Functions state machine deployment. Create a step to pause the state machine during the EMR jobs that fail. Configure the step to wait for a human user to send approval through an email message. Include details of the EMR task in the email message for further analysis.

B.

Verify that the Step Functions state machine code has all IAM permissions that are necessary to create and run the EMR jobs. Verify that the Step Functions state machine code also includes IAM permissions to access the Amazon S3 buckets that the EMR jobs use. Use Access Analyzer for S3 to check the S3 access properties.

C.

Check for entries in Amazon CloudWatch for the newly created EMR cluster. Change the AWS Step Functions state machine code to use Amazon EMR on EKS. Change the IAM access policies and the security group configuration for the Step Functions state machine code to reflect inclusion of Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Query the flow logs for the VPC. Determine whether the traffic that originates from the EMR cluster can successfully reach the data providers. Determine whether any security group that might be attached to the Amazon EMR cluster allows connections to the data source servers on the informed ports.

E.

Check the retry scenarios that the company configured for the EMR jobs. Increase the number of seconds in the interval between each EMR task. Validate that each fallback state has the appropriate catch for each decision state. Configure an Amazon Simple Notification Service (Amazon SNS) topic to store the error messages.

A company maintains multiple extract, transform, and load (ETL) workflows that ingest data from the company's operational databases into an Amazon S3 based data lake. The ETL workflows use AWS Glue and Amazon EMR to process data.

The company wants to improve the existing architecture to provide automated orchestration and to require minimal manual effort.

Which solution will meet these requirements with the LEAST operational overhead?

A.

AWS Glue workflows

B.

AWS Step Functions tasks

C.

AWS Lambda functions

D.

Amazon Managed Workflows for Apache Airflow (Amazon MWAA) workflows

A data engineer is using an AWS Glue ETL job to remove outdated customer records from a table that contains customer account information. The data engineer is using the following SQL command:

MERGE INTO accounts t USING monthly_accounts_update s

ON t.customer = s.customer

WHEN MATCHED THEN DELETE

What will happen when the data engineer runs the SQL command?

A.

All customer records that exist in both the customer accounts table and the monthly_accounts_update table will be deleted from the accounts table.

B.

Only customer records that are present in both tables will be retained in the customer accounts table.

C.

The monthly_accounts_update table will be deleted.

D.

No records will be deleted because the command syntax is not valid in AWS Glue.

A data engineer needs to schedule a workflow that runs a set of AWS Glue jobs every day. The data engineer does not require the Glue jobs to run or finish at a specific time.

Which solution will run the Glue jobs in the MOST cost-effective way?

A.

Choose the FLEX execution class in the Glue job properties.

B.

Use the Spot Instance type in Glue job properties.

C.

Choose the STANDARD execution class in the Glue job properties.

D.

Choose the latest version in the GlueVersion field in the Glue job properties.

Copyright © 2014-2025 Solution2Pass. All Rights Reserved