Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: s2p65

Easiest Solution 2 Pass Your Certification Exams

Data-Engineer-Associate Amazon Web Services AWS Certified Data Engineer - Associate (DEA-C01) Free Practice Exam Questions (2026 Updated)

Prepare effectively for your Amazon Web Services Data-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01) certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2026, ensuring you have the most current resources to build confidence and succeed on your first attempt.

A company needs a solution to manage costs for an existing Amazon DynamoDB table. The company also needs to control the size of the table. The solution must not disrupt any ongoing read or write operations. The company wants to use a solution that automatically deletes data from the table after 1 month.

Which solution will meet these requirements with the LEAST ongoing maintenance?

A.

Use the DynamoDB TTL feature to automatically expire data based on timestamps.

B.

Configure a scheduled Amazon EventBridge rule to invoke an AWS Lambda function to check for data that is older than 1 month. Configure the Lambda function to delete old data.

C.

Configure a stream on the DynamoDB table to invoke an AWS Lambda function. Configure the Lambda function to delete data in the table that is older than 1 month.

D.

Use an AWS Lambda function to periodically scan the DynamoDB table for data that is older than 1 month. Configure the Lambda function to delete old data.

A company has an application that uses a microservice architecture. The company hosts the application on an Amazon Elastic Kubernetes Services (Amazon EKS) cluster.

The company wants to set up a robust monitoring system for the application. The company needs to analyze the logs from the EKS cluster and the application. The company needs to correlate the cluster's logs with the application's traces to identify points of failure in the whole application request flow.

Which combination of steps will meet these requirements with the LEAST development effort? (Select TWO.)

A.

Use FluentBit to collect logs. Use OpenTelemetry to collect traces.

B.

Use Amazon CloudWatch to collect logs. Use Amazon Kinesis to collect traces.

C.

Use Amazon CloudWatch to collect logs. Use Amazon Managed Streaming for Apache Kafka (Amazon MSK) to collect traces.

D.

Use Amazon OpenSearch to correlate the logs and traces.

E.

Use AWS Glue to correlate the logs and traces.

A data engineer must manage the ingestion of real-time streaming data into AWS. The data engineer wants to perform real-time analytics on the incoming streaming data by using time-based aggregations over a window of up to 30 minutes. The data engineer needs a solution that is highly fault tolerant.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use an AWS Lambda function that includes both the business and the analytics logic to perform time-based aggregations over a window of up to 30 minutes for the data in Amazon Kinesis Data Streams.

B.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data that might occasionally contain duplicates by using multiple types of aggregations.

C.

Use an AWS Lambda function that includes both the business and the analytics logic to perform aggregations for a tumbling window of up to 30 minutes, based on the event timestamp.

D.

Use Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) to analyze the data by using multiple types of aggregations to perform time-based analytics over a window of up to 30 minutes.

A company currently uses a provisioned Amazon EMR cluster that includes general purpose Amazon EC2 instances. The EMR cluster uses EMR managed scaling between one to five task nodes for the company's long-running Apache Spark extract, transform, and load (ETL) job. The company runs the ETL job every day.

When the company runs the ETL job, the EMR cluster quickly scales up to five nodes. The EMR cluster often reaches maximum CPU usage, but the memory usage remains under 30%.

The company wants to modify the EMR cluster configuration to reduce the EMR costs to run the daily ETL job.

Which solution will meet these requirements MOST cost-effectively?

A.

Increase the maximum number of task nodes for EMR managed scaling to 10.

B.

Change the task node type from general purpose EC2 instances to memory optimized EC2 instances.

C.

Switch the task node type from general purpose EC2 instances to compute optimized EC2 instances.

D.

Reduce the scaling cooldown period for the provisioned EMR cluster.

A data engineer must use AWS services to ingest a dataset into an Amazon S3 data lake. The data engineer profiles the dataset and discovers that the dataset contains personally identifiable information (PII). The data engineer must implement a solution to profile the dataset and obfuscate the PII.

Which solution will meet this requirement with the LEAST operational effort?

A.

Use an Amazon Kinesis Data Firehose delivery stream to process the dataset. Create an AWS Lambda transform function to identify the PII. Use an AWS SDK to obfuscate the PII. Set the S3 data lake as the target for the delivery stream.

B.

Use the Detect PII transform in AWS Glue Studio to identify the PII. Obfuscate the PII. Use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake.

C.

Use the Detect PII transform in AWS Glue Studio to identify the PII. Create a rule in AWS Glue Data Quality to obfuscate the PII. Use an AWS Step Functions state machine to orchestrate a data pipeline to ingest the data into the S3 data lake.

D.

Ingest the dataset into Amazon DynamoDB. Create an AWS Lambda function to identify and obfuscate the PII in the DynamoDB table and to transform the data. Use the same Lambda function to ingest the data into the S3 data lake.

A car sales company maintains data about cars that are listed for sale in an area. The company receives data about new car listings from vendors who upload the data daily as compressed files into Amazon S3. The compressed files are up to 5 KB in size. The company wants to see the most up-to-date listings as soon as the data is uploaded to Amazon S3.

A data engineer must automate and orchestrate the data processing workflow of the listings to feed a dashboard. The data engineer must also provide the ability to perform one-time queries and analytical reporting. The query solution must be scalable.

Which solution will meet these requirements MOST cost-effectively?

A.

Use an Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Apache Hive for one-time queries and analytical reporting. Use Amazon OpenSearch Service to bulk ingest the data into compute optimized instances. Use OpenSearch Dashboards in OpenSearch Service for the dashboard.

B.

Use a provisioned Amazon EMR cluster to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

C.

Use AWS Glue to process incoming data. Use AWS Step Functions to orchestrate workflows. Use Amazon Redshift Spectrum for one-time queries and analytical reporting. Use OpenSearch Dashboards in Amazon OpenSearch Service for the dashboard.

D.

Use AWS Glue to process incoming data. Use AWS Lambda and S3 Event Notifications to orchestrate workflows. Use Amazon Athena for one-time queries and analytical reporting. Use Amazon QuickSight for the dashboard.

A company has a production AWS account that runs company workloads. The company's security team created a security AWS account to store and analyze security logs from the production AWS account. The security logs in the production AWS account are stored in Amazon CloudWatch Logs.

The company needs to use Amazon Kinesis Data Streams to deliver the security logs to the security AWS account.

Which solution will meet these requirements?

A.

Create a destination data stream in the production AWS account. In the security AWS account, create an IAM role that has cross-account permissions to Kinesis Data Streams in the production AWS account.

B.

Create a destination data stream in the security AWS account. Create an IAM role and a trust policy to grant CloudWatch Logs the permission to put data into the stream. Create a subscription filter in the security AWS account.

C.

Create a destination data stream in the production AWS account. In the production AWS account, create an IAM role that has cross-account permissions to Kinesis Data Streams in the security AWS account.

D.

Create a destination data stream in the security AWS account. Create an IAM role and a trust policy to grant CloudWatch Logs the permission to put data into the stream. Create a subscription filter in the production AWS account.

A data engineer uses AWS Lake Formation to manage access to data that is stored in an Amazon S3 bucket. The data engineer configures an AWS Glue crawler to discover data at a specific file location in the bucket, s3://examplepath. The crawler execution fails with the following error:

"The S3 location: s3://examplepath is not registered."

The data engineer needs to resolve the error.

A.

Attach an appropriate IAM policy to the IAM role of the AWS Glue crawler to grant the crawler permission to read the S3 location.

B.

Register the S3 location in Lake Formation to allow the crawler to access the data.

C.

Create a new AWS Glue database. Assign the correct permissions to the database for the crawler.

D.

Configure the S3 bucket policy to allow cross-account access.

A retail company has a customer data hub in an Amazon S3 bucket. Employees from many countries use the data hub to support company-wide analytics. A governance team must ensure that the company's data analysts can access data only for customers who are within the same country as the analysts.

Which solution will meet these requirements with the LEAST operational effort?

A.

Create a separate table for each country's customer data. Provide access to each analyst based on the country that the analyst serves.

B.

Register the S3 bucket as a data lake location in AWS Lake Formation. Use the Lake Formation row-level security features to enforce the company's access policies.

C.

Move the data to AWS Regions that are close to the countries where the customers are. Provide access to each analyst based on the country that the analyst serves.

D.

Load the data into Amazon Redshift. Create a view for each country. Create separate 1AM roles for each country to provide access to data from each country. Assign the appropriate roles to the analysts.

A retail company stores data from a product lifecycle management (PLM) application in an on-premises MySQL database. The PLM application frequently updates the database when transactions occur.

The company wants to gather insights from the PLM application in near real time. The company wants to integrate the insights with other business datasets and to analyze the combined dataset by using an Amazon Redshift data warehouse.

The company has already established an AWS Direct Connect connection between the on-premises infrastructure and AWS.

Which solution will meet these requirements with the LEAST development effort?

A.

Run a scheduled AWS Glue extract, transform, and load (ETL) job to get the MySQL database updates by using a Java Database Connectivity (JDBC) connection. Set Amazon Redshift as the destination for the ETL job.

B.

Run a full load plus CDC task in AWS Database Migration Service (AWS DMS) to continuously replicate the MySQL database changes. Set Amazon Redshift as the destination for the task.

C.

Use the Amazon AppFlow SDK to build a custom connector for the MySQL database to continuously replicate the database changes. Set Amazon Redshift as the destination for the connector.

D.

Run scheduled AWS DataSync tasks to synchronize data from the MySQL database. Set Amazon Redshift as the destination for the tasks.

A telecommunications company collects network usage data throughout each day at a rate of several thousand data points each second. The company runs an application to process the usage data in real time. The company aggregates and stores the data in an Amazon Aurora DB instance.

Sudden drops in network usage usually indicate a network outage. The company must be able to identify sudden drops in network usage so the company can take immediate remedial actions.

Which solution will meet this requirement with the LEAST latency?

A.

Create an AWS Lambda function to query Aurora for drops in network usage. Use Amazon EventBridge to automatically invoke the Lambda function every minute.

B.

Modify the processing application to publish the data to an Amazon Kinesis data stream. Create an Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) application to detect drops in network usage.

C.

Replace the Aurora database with an Amazon DynamoDB table. Create an AWS Lambda function to query the DynamoDB table for drops in network usage every minute. Use DynamoDB Accelerator (DAX) between the processing application and DynamoDB table.

D.

Create an AWS Lambda function within the Database Activity Streams feature of Aurora to detect drops in network usage.

A company has as JSON file that contains personally identifiable information (PIT) data and non-PII data. The company needs to make the data available for querying and analysis. The non-PII data must be available to everyone in the company. The PII data must be available only to a limited group of employees. Which solution will meet these requirements with the LEAST operational overhead?

A.

Store the JSON file in an Amazon S3 bucket. Configure AWS Glue to split the file into one file that contains the PII data and one file that contains the non-PII data. Store the output files in separate S3 buckets. Grant the required access to the buckets based on the type of user.

B.

Store the JSON file in an Amazon S3 bucket. Use Amazon Macie to identify PII data and to grant access based on the type of user.

C.

Store the JSON file in an Amazon S3 bucket. Catalog the file schema in AWS Lake Formation. Use Lake Formation permissions to provide access to the required data based on the type of user.

D.

Create two Amazon RDS PostgreSQL databases. Load the PII data and the non-PII data into the separate databases. Grant access to the databases based on the type of user.

A company is migrating a legacy application to an Amazon S3 based data lake. A data engineer reviewed data that is associated with the legacy application. The data engineer found that the legacy data contained some duplicate information.

The data engineer must identify and remove duplicate information from the legacy application data.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Write a custom extract, transform, and load (ETL) job in Python. Use the DataFramedrop duplicatesf) function by importing the Pandas library to perform data deduplication.

B.

Write an AWS Glue extract, transform, and load (ETL) job. Use the FindMatches machine learning (ML) transform to transform the data to perform data deduplication.

C.

Write a custom extract, transform, and load (ETL) job in Python. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

D.

Write an AWS Glue extract, transform, and load (ETL) job. Import the Python dedupe library. Use the dedupe library to perform data deduplication.

The company stores a large volume of customer records in Amazon S3. To comply with regulations, the company must be able to access new customer records immediately for the first 30 days after the records are created. The company accesses records that are older than 30 days infrequently.

The company needs to cost-optimize its Amazon S3 storage.

Which solution will meet these requirements MOST cost-effectively?

A.

Apply a lifecycle policy to transition records to S3 Standard Infrequent-Access (S3 Standard-IA) storage after 30 days.

B.

Use S3 Intelligent-Tiering storage.

C.

Transition records to S3 Glacier Deep Archive storage after 30 days.

D.

Use S3 Standard-Infrequent Access (S3 Standard-IA) storage for all customer records.

A data engineer needs to schedule a workflow that runs a set of AWS Glue jobs every day. The data engineer does not require the Glue jobs to run or finish at a specific time.

Which solution will run the Glue jobs in the MOST cost-effective way?

A.

Choose the FLEX execution class in the Glue job properties.

B.

Use the Spot Instance type in Glue job properties.

C.

Choose the STANDARD execution class in the Glue job properties.

D.

Choose the latest version in the GlueVersion field in the Glue job properties.

A company uses AWS Step Functions to orchestrate a data pipeline. The pipeline consists of Amazon EMR jobs that ingest data from data sources and store the data in an Amazon S3 bucket. The pipeline also includes EMR jobs that load the data to Amazon Redshift.

The company's cloud infrastructure team manually built a Step Functions state machine. The cloud infrastructure team launched an EMR cluster into a VPC to support the EMR jobs. However, the deployed Step Functions state machine is not able to run the EMR jobs.

Which combination of steps should the company take to identify the reason the Step Functions state machine is not able to run the EMR jobs? (Choose two.)

A.

Use AWS CloudFormation to automate the Step Functions state machine deployment. Create a step to pause the state machine during the EMR jobs that fail. Configure the step to wait for a human user to send approval through an email message. Include details of the EMR task in the email message for further analysis.

B.

Verify that the Step Functions state machine code has all IAM permissions that are necessary to create and run the EMR jobs. Verify that the Step Functions state machine code also includes IAM permissions to access the Amazon S3 buckets that the EMR jobs use. Use Access Analyzer for S3 to check the S3 access properties.

C.

Check for entries in Amazon CloudWatch for the newly created EMR cluster. Change the AWS Step Functions state machine code to use Amazon EMR on EKS. Change the IAM access policies and the security group configuration for the Step Functions state machine code to reflect inclusion of Amazon Elastic Kubernetes Service (Amazon EKS).

D.

Query the flow logs for the VPC. Determine whether the traffic that originates from the EMR cluster can successfully reach the data providers. Determine whether any security group that might be attached to the Amazon EMR cluster allows connections to the data source servers on the informed ports.

E.

Check the retry scenarios that the company configured for the EMR jobs. Increase the number of seconds in the interval between each EMR task. Validate that each fallback state has the appropriate catch for each decision state. Configure an Amazon Simple Notification Service (Amazon SNS) topic to store the error messages.

A company stores customer data in an Amazon S3 bucket. The company must permanently delete all customer data that is older than 7 years.

A.

Configure an S3 Lifecycle policy to permanently delete objects that are older than 7 years.

B.

Use Amazon Athena to query the S3 bucket for objects that are older than 7 years. Configure Athena to delete the results.

C.

Configure an S3 Lifecycle policy to move objects that are older than 7 years to S3 Glacier Deep Archive.

D.

Configure an S3 Lifecycle policy to enable S3 Object Lock on all objects that are older than 7 years.

A company uses Amazon RDS for MySQL as the database for a critical application. The database workload is mostly writes, with a small number of reads.

A data engineer notices that the CPU utilization of the DB instance is very high. The high CPU utilization is slowing down the application. The data engineer must reduce the CPU utilization of the DB Instance.

Which actions should the data engineer take to meet this requirement? (Choose two.)

A.

Use the Performance Insights feature of Amazon RDS to identify queries that have high CPU utilization. Optimize the problematic queries.

B.

Modify the database schema to include additional tables and indexes.

C.

Reboot the RDS DB instance once each week.

D.

Upgrade to a larger instance size.

E.

Implement caching to reduce the database query load.

A company analyzes data in a data lake every quarter to perform inventory assessments. A data engineer uses AWS Glue DataBrew to detect any personally identifiable information (PII) about customers within the data. The company's privacy policy considers some custom categories of information to be PII. However, the categories are not included in standard DataBrew data quality rules.

The data engineer needs to modify the current process to scan for the custom PII categories across multiple datasets within the data lake.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Manually review the data for custom PII categories.

B.

Implement custom data quality rules in Data Brew. Apply the custom rules across datasets.

C.

Develop custom Python scripts to detect the custom PII categories. Call the scripts from DataBrew.

D.

Implement regex patterns to extract PII information from fields during extract transform, and load (ETL) operations into the data lake.

A company stores a 100 MB dataset in an Amazon S3 bucket as an Apache Parquet file. A data engineer needs to profile the data before performing data preparation steps on the data.

Which solution will meet this requirement in the MOST operationally efficient way?

A.

Create a profile job on the dataset in AWS Glue DataBrew. Review the profile job results.

B.

Stream the data into Amazon Managed Service for Apache Flink for SQL queries. Use the Apache Flink dashboard to profile the data.

C.

Ingest the data into Amazon Redshift Spectrum. Use SQL queries to profile the data.

D.

Load the data into an Amazon QuickSight dataset. Build a topic to profile the data with questions.

Copyright © 2014-2026 Solution2Pass. All Rights Reserved