Winter Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: s2p65

Easiest Solution 2 Pass Your Certification Exams

Data-Engineer-Associate Amazon Web Services AWS Certified Data Engineer - Associate (DEA-C01) Free Practice Exam Questions (2026 Updated)

Prepare effectively for your Amazon Web Services Data-Engineer-Associate AWS Certified Data Engineer - Associate (DEA-C01) certification with our extensive collection of free, high-quality practice questions. Each question is designed to mirror the actual exam format and objectives, complete with comprehensive answers and detailed explanations. Our materials are regularly updated for 2026, ensuring you have the most current resources to build confidence and succeed on your first attempt.

A company is designing a serverless data processing workflow in AWS Step Functions that involves multiple steps. The processing workflow ingests data from an external API, transforms the data by using multiple AWS Lambda functions, and loads the transformed data into Amazon DynamoDB.

The company needs the workflow to perform specific steps based on the content of the incoming data.

Which Step Functions state type should the company use to meet this requirement?

A.

Parallel

B.

Choice

C.

Task

D.

Map

A company needs to build an extract, transform, and load (ETL) pipeline that has separate stages for batch data ingestion, transformation, and storage. The pipeline must store the transformed data in an Amazon S3 bucket. Each stage must automatically retry failures. The pipeline must provide visibility into the success or failure of individual stages.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Chain AWS Glue jobs that perform each stage together by using job triggers. Set the MaxRetries field to 0.

B.

Deploy AWS Step Functions workflows to orchestrate AWS Lambda functions that ingest data. Use AWS Glue jobs to transform the data and store the data in the S3 bucket.

C.

Build an Amazon EventBridge–based pipeline that invokes AWS Lambda functions to perform each stage.

D.

Schedule Apache Airflow directed acyclic graphs (DAGs) on Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to orchestrate pipeline steps. Use Amazon Simple Queue Service (Amazon SQS) to ingest data. Use AWS Glue jobs to transform data and store the data in the S3 bucket.

A company is developing an application that runs on Amazon EC2 instances. Currently, the data that the application generates is temporary. However, the company needs to persist the data, even if the EC2 instances are terminated.

A data engineer must launch new EC2 instances from an Amazon Machine Image (AMI) and configure the instances to preserve the data.

Which solution will meet this requirement?

A.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume that contains the application data. Apply the default settings to the EC2 instances.

B.

Launch new EC2 instances by using an AMI that is backed by a root Amazon Elastic Block Store (Amazon EBS) volume that contains the application data. Apply the default settings to the EC2 instances.

C.

Launch new EC2 instances by using an AMI that is backed by an EC2 instance store volume. Attach an Amazon Elastic Block Store (Amazon EBS) volume to contain the application data. Apply the default settings to the EC2 instances.

D.

Launch new EC2 instances by using an AMI that is backed by an Amazon Elastic Block Store (Amazon EBS) volume. Attach an additional EC2 instance store volume to contain the application data. Apply the default settings to the EC2 instances.

A company is building an analytics solution. The solution uses Amazon S3 for data lake storage and Amazon Redshift for a data warehouse. The company wants to use Amazon Redshift Spectrum to query the data that is in Amazon S3.

Which actions will provide the FASTEST queries? (Choose two.)

A.

Use gzip compression to compress individual files to sizes that are between 1 GB and 5 GB.

B.

Use a columnar storage file format.

C.

Partition the data based on the most common query predicates.

D.

Split the data into files that are less than 10 KB.

E.

Use file formats that are not

A data engineer is building a data pipeline on AWS by using AWS Glue extract, transform, and load (ETL) jobs. The data engineer needs to process data from Amazon RDS and MongoDB, perform transformations, and load the transformed data into Amazon Redshift for analytics. The data updates must occur every hour.

Which combination of tasks will meet these requirements with the LEAST operational overhead? (Choose two.)

A.

Configure AWS Glue triggers to run the ETL jobs even/ hour.

B.

Use AWS Glue DataBrewto clean and prepare the data for analytics.

C.

Use AWS Lambda functions to schedule and run the ETL jobs even/ hour.

D.

Use AWS Glue connections to establish connectivity between the data sources and Amazon Redshift.

E.

Use the Redshift Data API to load transformed data into Amazon Redshift.

A banking company uses an application to collect large volumes of transactional data. The company uses Amazon Kinesis Data Streams for real-time analytics. The company's application uses the PutRecord action to send data to Kinesis Data Streams.

A data engineer has observed network outages during certain times of day. The data engineer wants to configure exactly-once delivery for the entire processing pipeline.

Which solution will meet this requirement?

A.

Design the application so it can remove duplicates during processing by embedding a unique ID in each record at the source.

B.

Update the checkpoint configuration of the Amazon Managed Service for Apache Flink (previously known as Amazon Kinesis Data Analytics) data collection application to avoid duplicate processing of events.

C.

Design the data source so events are not ingested into Kinesis Data Streams multiple times.

D.

Stop using Kinesis Data Streams. Use Amazon EMR instead. Use Apache Flink and Apache Spark Streaming in Amazon EMR.

A data engineer is using Amazon Athena to analyze sales data that is in Amazon S3. The data engineer writes a query to retrieve sales amounts for 2023 for several products from a table named sales_data. However, the query does not return results for all of the products that are in the sales_data table. The data engineer needs to troubleshoot the query to resolve the issue.

The data engineer's original query is as follows:

SELECT product_name, sum(sales_amount)

FROM sales_data

WHERE year = 2023

GROUP BY product_name

How should the data engineer modify the Athena query to meet these requirements?

A.

Replace sum(sales amount) with count(*J for the aggregation.

B.

Change WHERE year = 2023 to WHERE extractlyear FROM sales data) = 2023.

C.

Add HAVING sumfsales amount) > 0 after the GROUP BY clause.

D.

Remove the GROUP BY clause

A company has a data lake in Amazon 53. The company uses AWS Glue to catalog data and AWS Glue Studio to implement data extract, transform, and load (ETL) pipelines.

The company needs to ensure that data quality issues are checked every time the pipelines run. A data engineer must enhance the existing pipelines to evaluate data quality rules based on predefined thresholds.

Which solution will meet these requirements with the LEAST implementation effort?

A.

Add a new transform that is defined by a SQL query to each Glue ETL job. Use the SQL query to implement a ruleset that includes the data quality rules that need to be evaluated.

B.

Add a new Evaluate Data Quality transform to each Glue ETL job. Use Data Quality Definition Language (DQDL) to implement a ruleset that includes the data quality rules that need to be evaluated.

C.

Add a new custom transform to each Glue ETL job. Use the PyDeequ library to implement a ruleset that includes the data quality rules that need to be evaluated.

D.

Add a new custom transform to each Glue ETL job. Use the Great Expectations library to implement a ruleset that includes the data quality rules that need to be evaluated.

A company has a data processing pipeline that runs multiple SQL queries in sequence against an Amazon Redshift cluster. The company merges with a second company. The original company modifies a query that aggregates sales revenue data to join sales tables from both companies.

The sales table for the first company is named Table S1 and contains 10 billion records. The sales table for the second company is named Table S2 and contains 900 million records. The query becomes slow after the modification.

A data engineer must improve the query performance.

Which solutions will meet these requirements? (Select TWO)

A.

Use the KEY distribution style for both sales tables. Select a low-cardinality column to use for the join.

B.

Use the KEY distribution style for both sales tables. Select a high-cardinality column to use for the join.

C.

Use the EVEN distribution style for Table S1. Use the ALL distribution style for Table S2.

D.

Use the Amazon Redshift query optimizer to review and select optimizations to implement.

E.

Use Amazon Redshift Advisor to review and select optimizations to implement.

A data engineer develops an AWS Glue Apache Spark ETL job to perform transformations on a dataset. When the data engineer runs the job, the job returns an error that reads, "No space left on device."

The data engineer needs to identify the source of the error and provide a solution.

Which combinations of steps will meet this requirement MOST cost-effectively? (Select TWO.)

A.

Scale out the workers vertically to address data skewness.

B.

Use the Spark UI and AWS Glue metrics to monitor data skew in the Spark executors.

C.

Scale out the number of workers horizontally to address data skewness.

D.

Enable the --write-shuffle-files-to-s3 job parameter. Use the salting technique.

E.

Use error logs in Amazon CloudWatch to monitor data skew.

A company extracts approximately 1 TB of data every day from data sources such as SAP HANA, Microsoft SQL Server, MongoDB, Apache Kafka, and Amazon DynamoDB. Some of the data sources have undefined data schemas or data schemas that change.

A data engineer must implement a solution that can detect the schema for these data sources. The solution must extract, transform, and load the data to an Amazon S3 bucket. The company has a service level agreement (SLA) to load the data into the S3 bucket within 15 minutes of data creation.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use Amazon EMR to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

B.

Use AWS Glue to detect the schema and to extract, transform, and load the data into the S3 bucket. Create a pipeline in Apache Spark.

C.

Create a PvSpark proqram in AWS Lambda to extract, transform, and load the data into the S3 bucket.

D.

Create a stored procedure in Amazon Redshift to detect the schema and to extract, transform, and load the data into a Redshift Spectrum table. Access the table from Amazon S3.

A company stores data from an application in an Amazon DynamoDB table that operates in provisioned capacity mode. The workloads of the application have predictable throughput load on a regular schedule. Every Monday, there is an immediate increase in activity early in the morning. The application has very low usage during weekends.

The company must ensure that the application performs consistently during peak usage times.

Which solution will meet these requirements in the MOST cost-effective way?

A.

Increase the provisioned capacity to the maximum capacity that is currently present during peak load times.

B.

Divide the table into two tables. Provision each table with half of the provisioned capacity of the original table. Spread queries evenly across both tables.

C.

Use AWS Application Auto Scaling to schedule higher provisioned capacity for peak usage times. Schedule lower capacity during off-peak times.

D.

Change the capacity mode from provisioned to on-demand. Configure the table to scale up and scale down based on the load on the table.

A company stores employee data in Amazon Redshift A table named Employee uses columns named Region ID, Department ID, and Role ID as a compound sort key. Which queries will MOST increase the speed of a query by using a compound sort key of the table? (Select TWO.)

A.

Select * from Employee where Region ID='North America';

B.

Select * from Employee where Region ID='North America' and Department ID=20;

C.

Select * from Employee where Department ID=20 and Region ID='North America';

D.

Select " from Employee where Role ID=50;

E.

Select * from Employee where Region ID='North America' and Role ID=50;

A company uses an Amazon QuickSight dashboard to monitor usage of one of the company's applications. The company uses AWS Glue jobs to process data for the dashboard. The company stores the data in a single Amazon S3 bucket. The company adds new data every day.

A data engineer discovers that dashboard queries are becoming slower over time. The data engineer determines that the root cause of the slowing queries is long-running AWS Glue jobs.

Which actions should the data engineer take to improve the performance of the AWS Glue jobs? (Choose two.)

A.

Partition the data that is in the S3 bucket. Organize the data by year, month, and day.

B.

Increase the AWS Glue instance size by scaling up the worker type.

C.

Convert the AWS Glue schema to the DynamicFrame schema class.

D.

Adjust AWS Glue job scheduling frequency so the jobs run half as many times each day.

E.

Modify the 1AM role that grants access to AWS glue to grant access to all S3 features.

A company wants to ingest streaming data into an Amazon Redshift data warehouse from an Amazon Managed Streaming for Apache Kafka (Amazon MSK) cluster. A data engineer needs to develop a solution that provides low data access time and that optimizes storage costs.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Create an external schema that maps to the MSK cluster. Create a materialized view that references the external schema to consume the streaming data from the MSK topic.

B.

Develop an AWS Glue streaming extract, transform, and load (ETL) job to process the incoming data from Amazon MSK. Load the data into Amazon S3. Use Amazon Redshift Spectrum to read the data from Amazon S3.

C.

Create an external schema that maps to the streaming data source. Create a new Amazon Redshift table that references the external schema.

D.

Create an Amazon S3 bucket. Ingest the data from Amazon MSK. Create an event-driven AWS Lambda function to load the data from the S3 bucket to a new Amazon Redshift table.

A healthcare company stores patient records in an on-premises MySQL database. The company creates an application to access the MySQL database. The company must enforce security protocols to protect the patient records. The company currently rotates database credentials every 30 days to minimize the risk of unauthorized access.

The company wants a solution that does not require the company to modify the application code for each credential rotation.

Which solution will meet this requirement with the least operational overhead?

A.

Assign an IAM role access permissions to the database. Configure the application to obtain temporary credentials through the IAM role.

B.

Use AWS Key Management Service (AWS KMS) to generate encryption keys. Configure automatic key rotation. Store the encrypted credentials in an Amazon DynamoDB table.

C.

Use AWS Secrets Manager to automatically rotate credentials. Allow the application to retrieve the credentials by using API calls.

D.

Store credentials in an encrypted Amazon S3 bucket. Rotate the credentials every month by using an S3 Lifecycle policy. Use bucket policies to control access.

A hotel management company receives daily data files from each of its hotels. The company wants to upload its data to AWS. The company plans to use Amazon Athena to access the files. The company needs to protect the files from accidental deletion. The company will develop an application on its on-premises servers to automatically forward the files to a fully managed AWS ingestion service.

Which solution will meet these requirements with the LEAST operational overhead?

A.

Use AWS DataSync to replicate data from the on-premises servers to Amazon Elastic File System (Amazon EFS). Configure automatic backups in AWS Backup.

B.

Use the Amazon Kinesis Agent on the on-premises servers to send data to Amazon Data Firehose. Store the data in an Amazon S3 bucket that has versioning enabled.

C.

Use AWS Glue jobs to ingest data from the on-premises servers into Amazon RDS. Enable automated backups for data protection.

D.

Use a self-managed Apache Kafka agent on the on-premises servers to stream data to Amazon Managed Streaming for Apache Kafka (Amazon MSK). Store the data in an Amazon S3 bucket with versioning enabled.

A company manages an Amazon Redshift data warehouse. The data warehouse is in a public subnet inside a custom VPC A security group allows only traffic from within itself- An ACL is open to all traffic.

The company wants to generate several visualizations in Amazon QuickSight for an upcoming sales event. The company will run QuickSight Enterprise edition in a second AW5 account inside a public subnet within a second custom VPC. The new public subnet has a security group that allows outbound traffic to the existing Redshift cluster.

A data engineer needs to establish connections between Amazon Redshift and QuickSight. QuickSight must refresh dashboards by querying the Redshift cluster.

Which solution will meet these requirements?

A.

Configure the Redshift security group to allow inbound traffic on the Redshift port from the QuickSight security group.

B.

Assign Elastic IP addresses to the QuickSight visualizations. Configure the QuickSight security group to allow inbound traffic on the Redshift port from the Elastic IP addresses.

C.

Confirm that the CIDR ranges of the Redshift VPC and the QuickSight VPC are the same. If CIDR ranges are different, reconfigure one CIDR range to match the other. Establish network peering between the VPCs.

D.

Create a QuickSight gateway endpoint in the Redshift VPC. Attach an endpoint policy to the gateway endpoint to ensure only specific QuickSight accounts can use the endpoint.

A company saves customer data to an Amazon S3 bucket. The company uses server-side encryption with AWS KMS keys (SSE-KMS) to encrypt the bucket. The dataset includes personally identifiable information (PII) such as social security numbers and account details.

Data that is tagged as PII must be masked before the company uses customer data for analysis. Some users must have secure access to the PII data during the preprocessing phase. The company needs a low-maintenance solution to mask and secure the PII data throughout the entire engineering pipeline.

Which combination of solutions will meet these requirements? (Select TWO.)

A.

Use AWS Glue DataBrew to perform extract, transform, and load (ETL) tasks that mask the PII data before analysis.

B.

Use Amazon GuardDuty to monitor access patterns for the PII data that is used in the engineering pipeline.

C.

Configure an Amazon Made discovery job for the S3 bucket.

D.

Use AWS Identity and Access Management (IAM) to manage permissions and to control access to the PII data.

E.

Write custom scripts in an application to mask the PII data and to control access.

An ecommerce company stores sales data in an AWS Glue table named sales_data. The company stores the sales_data table in an Amazon S3 Standard bucket. The table contains columns named order_id, customer_id, product_id, order_date, shipping_date, and order_amount.

The company wants to improve query performance by partitioning the sales_data table by order_date. The company needs to add the partition to the existing sales_data table in AWS Glue.

Which solution will meet these requirements?

A.

Update the AWS Glue table’s schema to include the new partition.

B.

Edit the AWS Glue table’s metadata file directly in Amazon S3.

C.

Use the AWS Glue Data Catalog API to add the new partition to the table.

D.

Manually modify the S3 bucket to use the new partition.

Copyright © 2014-2026 Solution2Pass. All Rights Reserved